Search results
Results From The WOW.Com Content Network
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
In engineering, for instance, kinematic analysis may be used to find the range of movement for a given mechanism and, working in reverse, using kinematic synthesis to design a mechanism for a desired range of motion. [8] In addition, kinematics applies algebraic geometry to the study of the mechanical advantage of a mechanical system or mechanism.
There are many branches of classical mechanics, such as: statics, dynamics, kinematics, continuum mechanics (which includes fluid mechanics), statistical mechanics, etc. Mechanics: A branch of physics in which we study the object and properties of an object in form of a motion under the action of the force.
5 Euler's equations for rigid body dynamics. 6 General planar motion. ... Kinematic quantities of a classical particle: mass m, position r, velocity v, acceleration a.
[1] [2] [3] Since the mid-20th century, the term "dynamics" (or "analytical dynamics") has largely superseded "kinetics" in physics textbooks, [4] though the term is still used in engineering. In plasma physics , kinetics refers to the study of continua in velocity space.
The Lagrangian and Eulerian specifications of the kinematics and dynamics of the flow field are related by the material derivative (also called the Lagrangian derivative, convective derivative, substantial derivative, or particle derivative). [1] Suppose we have a flow field u, and we are also given a generic field with Eulerian specification F ...
Technically, quantum field theory provides the mathematical framework for the Standard Model, in which a Lagrangian controls the dynamics and kinematics of the theory. Each kind of particle is described in terms of a dynamical field that pervades space-time . [ 51 ]
The dynamics of a rigid body system is described by the laws of kinematics and by the application of Newton's second law or their derivative form, Lagrangian mechanics. The solution of these equations of motion provides a description of the position, the motion and the acceleration of the individual components of the system, and overall the ...