Ad
related to: convergence rate of sieve estimates
Search results
Results From The WOW.Com Content Network
Sieve estimators have been used extensively for estimating density functions in high-dimensional spaces such as in Positron emission tomography (PET). The first exploitation of Sieves in PET for solving the maximum-likelihood image reconstruction problem was by Donald Snyder and Michael Miller, [1] where they stabilized the time-of-flight PET problem originally solved by Shepp and Vardi. [2]
This definition is technically called Q-convergence, short for quotient-convergence, and the rates and orders are called rates and orders of Q-convergence when that technical specificity is needed. § R-convergence , below, is an appropriate alternative when this limit does not exist.
The rate of convergence of the MSE to 0 is the necessarily the same as the MISE rate noted previously O(n −4/(d+4)), hence the convergence rate of the density estimator to f is O p (n −2/(d+4)) where O p denotes order in probability. This establishes pointwise convergence.
The Goldston–Pintz–Yıldırım sieve (also called GPY sieve or GPY method) is a sieve method and variant of the Selberg sieve with generalized, multidimensional sieve weights. The sieve led to a series of important breakthroughs in analytic number theory. It is named after the mathematicians Dan Goldston, János Pintz and Cem Yıldırım. [1]
In numerical analysis, Richardson extrapolation is a sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value = (). In essence, given the value of A ( h ) {\displaystyle A(h)} for several values of h {\displaystyle h} , we can estimate A ∗ {\displaystyle A^{\ast }} by extrapolating the ...
A sieve analysis (or gradation test) is a practice or procedure used in geology, civil engineering, [1] and chemical engineering [2] to assess the particle size distribution (also called gradation) of a granular material by allowing the material to pass through a series of sieves of progressively smaller mesh size and weighing the amount of material that is stopped by each sieve as a fraction ...
In numerical analysis, order of accuracy quantifies the rate of convergence of a numerical approximation of a differential equation to the exact solution. Consider , the exact solution to a differential equation in an appropriate normed space (, | | | |).
Convergence in distribution is the weakest form of convergence typically discussed, since it is implied by all other types of convergence mentioned in this article. However, convergence in distribution is very frequently used in practice; most often it arises from application of the central limit theorem .