Ad
related to: discrete convergence rate of change calculator calculus
Search results
Results From The WOW.Com Content Network
Meanwhile, calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the study of continuous change. Discrete calculus has two entry points, differential calculus and integral calculus. Differential calculus concerns incremental rates of change and the slopes of piece-wise linear curves.
Recurrent sequences +:= (), called fixed point iterations, define discrete time autonomous dynamical systems and have important general applications in mathematics through various fixed-point theorems about their convergence behavior.
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
Each entry of this matrix represents a partial derivative, specifying the rate of change of one range coordinate with respect to a change in a domain coordinate. Of course, the Jacobian matrix of the composition g ° f is a product of corresponding Jacobian matrices: J x ( g ° f ) =J ƒ( x ) ( g )J x (ƒ).
The rate of convergence is distinguished from the number of iterations required to reach a given accuracy. For example, the function f ( x ) = x 20 − 1 has a root at 1. Since f ′(1) ≠ 0 and f is smooth, it is known that any Newton iteration convergent to 1 will converge quadratically.
To use a finite difference method to approximate the solution to a problem, one must first discretize the problem's domain. This is usually done by dividing the domain into a uniform grid (see image). This means that finite-difference methods produce sets of discrete numerical approximations to the derivative, often in a "time-stepping" manner.
The rate of convergence is linear, except for r = 3, when it is dramatically slow, less than linear (see Bifurcation memory). When the parameter 2 < r < 3, except for the initial values 0 and 1, the fixed point x f 2 = 1 − 1 / r {\displaystyle x_{f2}=1-1/r} is the same as when 1 < r ≤ 2.
In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. [citation needed]The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a direction ...