Search results
Results From The WOW.Com Content Network
The multiplication factor, k, is defined as (see nuclear chain reaction): k = number of neutrons in one generation / number of neutrons in preceding generation . If k is greater than 1, the chain reaction is supercritical, and the neutron population will grow exponentially.
Nuclear fission. Spontaneous; Products. ... These equations need to be refined such that the notation is defined as has been done for the previous sets of equations.
In nuclear fission events the nuclei may break into any combination of lighter nuclei, but the most common event is not fission to equal mass nuclei of about mass 120; the most common event (depending on isotope and process) is a slightly unequal fission in which one daughter nucleus has a mass of about 90 to 100 daltons and the other the ...
In nuclear engineering, a critical mass is the smallest amount of fissile material needed for a sustained nuclear chain reaction. The critical mass of a fissionable material depends upon its nuclear properties (specifically, its nuclear fission cross-section), density, shape, enrichment, purity, temperature, and
The four-factor formula, also known as Fermi's four factor formula is used in nuclear engineering to determine the multiplication of a nuclear chain reaction in an infinite medium. Four-factor formula: k ∞ = η f p ε {\displaystyle k_{\infty }=\eta fp\varepsilon } [ 1 ]
In a nuclear reactor, the neutron population at any instant is a function of the rate of neutron production (due to fission processes) and the rate of neutron losses (due to non-fission absorption mechanisms and leakage from the system). When a reactor's neutron population remains steady from one generation to the next (creating as many new ...
In nuclear physics and chemistry, the Q value for a nuclear reaction is the amount of energy absorbed or released during the reaction. The value relates to the enthalpy of a chemical reaction or the energy of radioactive decay products. It can be determined from the masses of reactants and products.
In nuclear engineering, the void coefficient (more properly called void coefficient of reactivity) is a number that can be used to estimate how much the reactivity of a nuclear reactor changes as voids (typically steam bubbles) form in the reactor moderator or coolant. Net reactivity in a reactor depends on several factors, one of which is the ...