When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Energy minimization - Wikipedia

    en.wikipedia.org/wiki/Energy_minimization

    As described above, some method such as quantum mechanics can be used to calculate the energy, E(r) , the gradient of the PES, that is, the derivative of the energy with respect to the position of the atoms, ∂E/∂r and the second derivative matrix of the system, ∂∂E/∂r i ∂r j, also known as the Hessian matrix, which describes the curvature of the PES at r.

  3. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.

  4. LOBPCG - Wikipedia

    en.wikipedia.org/wiki/LOBPCG

    Kantorovich in 1948 proposed calculating the smallest eigenvalue of a symmetric matrix by steepest descent using a direction = of a scaled gradient of a Rayleigh quotient = (,) / (,) in a scalar product (,) = ′, with the step size computed by minimizing the Rayleigh quotient in the linear span of the vectors and , i.e. in a locally optimal manner.

  5. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method can be applied to an arbitrary n-by-m matrix by applying it to normal equations A T A and right-hand side vector A T b, since A T A is a symmetric positive-semidefinite matrix for any A. The result is conjugate gradient on the normal equations (CGN or CGNR). A T Ax = A T b

  6. Descent direction - Wikipedia

    en.wikipedia.org/wiki/Descent_direction

    Numerous methods exist to compute descent directions, all with differing merits, such as gradient descent or the conjugate gradient method. More generally, if P {\displaystyle P} is a positive definite matrix, then p k = − P ∇ f ( x k ) {\displaystyle p_{k}=-P\nabla f(x_{k})} is a descent direction at x k {\displaystyle x_{k}} . [ 1 ]

  7. Derivation of the conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the...

    In particular, the gradient descent method would be slow. This can be seen in the diagram, where the green line is the result of always picking the local gradient direction. It zig-zags towards the minimum, but repeatedly overshoots.

  8. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Gradient descent can be viewed as applying Euler's method for solving ordinary differential equations ′ = (()) to a gradient flow. In turn, this equation may be derived as an optimal controller [22] for the control system ′ = with () given in feedback form () = (()).

  9. Nonlinear conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_conjugate...

    Whereas linear conjugate gradient seeks a solution to the linear equation =, the nonlinear conjugate gradient method is generally used to find the local minimum of a nonlinear function using its gradient alone. It works when the function is approximately quadratic near the minimum, which is the case when the function is twice differentiable at ...