When.com Web Search

  1. Ads

    related to: simplifying fractions with gcf

Search results

  1. Results From The WOW.Com Content Network
  2. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    In this section, we consider an integral domain Z (typically the ring Z of the integers) and its field of fractions Q (typically the field Q of the rational numbers). Given two polynomials A and B in the univariate polynomial ring Z [ X ] , the Euclidean division (over Q ) of A by B provides a quotient and a remainder which may not belong to Z ...

  3. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.

  4. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The number 1 (expressed as a fraction 1/1) is placed at the root of the tree, and the location of any other number a/b can be found by computing gcd(a,b) using the original form of the Euclidean algorithm, in which each step replaces the larger of the two given numbers by its difference with the smaller number (not its remainder), stopping when ...

  5. Irreducible fraction - Wikipedia

    en.wikipedia.org/wiki/Irreducible_fraction

    An irreducible fraction (or fraction in lowest terms, simplest form or reduced fraction) is a fraction in which the numerator and denominator are integers that have no other common divisors than 1 (and −1, when negative numbers are considered). [1]

  6. Clearing denominators - Wikipedia

    en.wikipedia.org/wiki/Clearing_denominators

    In mathematics, the method of clearing denominators, also called clearing fractions, is a technique for simplifying an equation equating two expressions that each are a sum of rational expressions – which includes simple fractions.

  7. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    If () is a monic polynomial in one variable with coefficients in a unique factorization domain (or more generally a GCD domain), then a root of that is in the field of fractions of is in . [ note 5 ] If R = Z {\displaystyle R=\mathbb {Z} } , then it says a rational root of a monic polynomial over integers is an integer (cf. the rational root ...