When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    In calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function, which are solutions to the equation =. However, to optimize a twice-differentiable f {\displaystyle f} , our goal is to find the roots of f ′ {\displaystyle f'} .

  3. Fundamental lemma of the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Fundamental_lemma_of_the...

    If a continuous function on an open interval (,) satisfies the equality () =for all compactly supported smooth functions on (,), then is identically zero. [1] [2]Here "smooth" may be interpreted as "infinitely differentiable", [1] but often is interpreted as "twice continuously differentiable" or "continuously differentiable" or even just "continuous", [2] since these weaker statements may be ...

  4. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    Suppose that the function f has a zero at α, i.e., f(α) = 0, and f is differentiable in a neighborhood of α. If f is continuously differentiable and its derivative is nonzero at α, then there exists a neighborhood of α such that for all starting values x 0 in that neighborhood, the sequence (x n) will converge to α. [10]

  5. Subgradient method - Wikipedia

    en.wikipedia.org/wiki/Subgradient_method

    When the objective function is differentiable, sub-gradient methods for unconstrained problems use the same search direction as the method of steepest descent. Subgradient methods are slower than Newton's method when applied to minimize twice continuously differentiable convex functions.

  6. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    After establishing the critical points of a function, the second-derivative test uses the value of the second derivative at those points to determine whether such points are a local maximum or a local minimum. [1] If the function f is twice-differentiable at a critical point x (i.e. a point where f ′ (x) = 0), then:

  7. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.

  8. Convex function - Wikipedia

    en.wikipedia.org/wiki/Convex_function

    A twice differentiable function of one variable is convex on an interval if and only if its second derivative is non-negative there; this gives a practical test for convexity. Visually, a twice differentiable convex function "curves up", without any bends the other way (inflection points).

  9. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    For functions of three or more variables, the determinant of the Hessian does not provide enough information to classify the critical point, because the number of jointly sufficient second-order conditions is equal to the number of variables, and the sign condition on the determinant of the Hessian is only one of the conditions.