Search results
Results From The WOW.Com Content Network
MapReduce is a programming model and an associated implementation for processing and generating big data sets with a parallel and distributed algorithm on a cluster. [1] [2] [3]A MapReduce program is composed of a map procedure, which performs filtering and sorting (such as sorting students by first name into queues, one queue for each name), and a reduce method, which performs a summary ...
The initial code that was factored out of Nutch consisted of about 5,000 lines of code for HDFS and about 6,000 lines of code for MapReduce. In March 2006, Owen O'Malley was the first committer to add to the Hadoop project; [ 21 ] Hadoop 0.1.0 was released in April 2006. [ 22 ]
Cascading is a software abstraction layer for Apache Hadoop and Apache Flink. Cascading is used to create and execute complex data processing workflows on a Hadoop cluster using any JVM-based language (Java, JRuby, Clojure, etc.), hiding the underlying complexity of MapReduce jobs. It is open source and available under the Apache License.
Apache Pig [1] is a high-level platform for creating programs that run on Apache Hadoop. The language for this platform is called Pig Latin. [1] Pig can execute its Hadoop jobs in MapReduce, Apache Tez, or Apache Spark. [2]
Hadoop now encompasses multiple subprojects in addition to the base core, MapReduce, and HDFS distributed filesystem. These additional subprojects provide enhanced application processing capabilities to the base Hadoop implementation and currently include Avro, Pig , HBase , ZooKeeper , Hive , and Chukwa.
In 2004, Google published a paper on a process called MapReduce that uses a similar architecture. The MapReduce concept provides a parallel processing model, and an associated implementation was released to process huge amounts of data. With MapReduce, queries are split and distributed across parallel nodes and processed in parallel (the "map ...
It is built on top of Apache Hadoop for providing data query and analysis. [3] [4] Hive gives an SQL-like interface to query data stored in various databases and file systems that integrate with Hadoop. Traditional SQL queries must be implemented in the MapReduce Java API to execute SQL applications and queries over distributed data.
Similar to MapReduce, arbitrary user code is handed and executed by PACTs. However, PACT generalizes a couple of MapReduce's concepts: Second-order Functions: PACT provides more second-order functions. Currently, five second-order functions called Input Contracts are supported. This set might be extended in the future.