When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel .

  3. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.

  4. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Linear multistep methods are used for the numerical solution of ordinary differential equations. Conceptually, a numerical method starts from an initial point and then takes a short step forward in time to find the next solution point.

  5. Substitution (logic) - Wikipedia

    en.wikipedia.org/wiki/Substitution_(logic)

    A substitution σ is called a linear substitution if tσ is a linear term for some (and hence every) linear term t containing precisely the variables of σ ' s domain, i.e. with vars(t) = dom(σ). A substitution σ is called a flat substitution if xσ is a variable for every variable x.

  6. Diophantine equation - Wikipedia

    en.wikipedia.org/wiki/Diophantine_equation

    This is a linear Diophantine equation, related to Bézout's identity. + = + The smallest nontrivial solution in positive integers is 12 3 + 1 3 = 9 3 + 10 3 = 1729.It was famously given as an evident property of 1729, a taxicab number (also named Hardy–Ramanujan number) by Ramanujan to Hardy while meeting in 1917. [1]

  7. Volterra integral equation - Wikipedia

    en.wikipedia.org/wiki/Volterra_integral_equation

    A linear Volterra equation of the first kind can always be reduced to a linear Volterra equation of the second kind, assuming that (,).Taking the derivative of the first kind Volterra equation gives us: = + (,) Dividing through by (,) yields: = (,) (,) Defining ~ = (,) and ~ (,) = (,) completes the transformation of the first kind equation into a linear Volterra equation of the second kind.

  8. Linear combination - Wikipedia

    en.wikipedia.org/wiki/Linear_combination

    is the linear combination of vectors and such that = +. In mathematics, a linear combination or superposition is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of x and y would be any expression of the form ax + by, where a and b are constants).

  9. Linear interpolation - Wikipedia

    en.wikipedia.org/wiki/Linear_interpolation

    A description of linear interpolation can be found in the ancient Chinese mathematical text called The Nine Chapters on the Mathematical Art (九章算術), [1] dated from 200 BC to AD 100 and the Almagest (2nd century AD) by Ptolemy. The basic operation of linear interpolation between two values is commonly used in computer graphics.