When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Forbidden graph characterization - Wikipedia

    en.wikipedia.org/wiki/Forbidden_graph...

    In order for a family to have a forbidden graph characterization, with a particular type of substructure, the family must be closed under substructures. That is, every substructure (of a given type) of a graph in the family must be another graph in the family. Equivalently, if a graph is not part of the family, all larger graphs containing it ...

  3. Forbidden subgraph problem - Wikipedia

    en.wikipedia.org/wiki/Forbidden_subgraph_problem

    In extremal graph theory, the forbidden subgraph problem is the following problem: given a graph , find the maximal number of edges ⁡ (,) an -vertex graph can have such that it does not have a subgraph isomorphic to .

  4. Category:Graph families - Wikipedia

    en.wikipedia.org/wiki/Category:Graph_families

    See Families of sets for related families of non-graph combinatorial objects, graphs for individual graphs and graph families parametrized by a small number of numeric parameters, and graph theory for more general information about graph theory. See also Category:Graph operations for graphs distinguished for the specific way of their construction

  5. Robertson–Seymour theorem - Wikipedia

    en.wikipedia.org/wiki/Robertson–Seymour_theorem

    A family F of graphs is said to be closed under the operation of taking minors if every minor of a graph in F also belongs to F. If F is a minor-closed family, then let S be the class of graphs that are not in F (the complement of F). According to the Robertson–Seymour theorem, there exists a finite set H of minimal elements in S.

  6. Wagner's theorem - Wikipedia

    en.wikipedia.org/wiki/Wagner's_theorem

    Proof without words that a hypercube graph is non-planar using Kuratowski's or Wagner's theorems and finding either K 5 (top) or K 3,3 (bottom) subgraphs. Wagner published both theorems in 1937, [1] subsequent to the 1930 publication of Kuratowski's theorem, [2] according to which a graph is planar if and only if it does not contain as a subgraph a subdivision of one of the same two forbidden ...

  7. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    A graph is H-free if it does not have an induced subgraph isomorphic to H, that is, if H is a forbidden induced subgraph. The H-free graphs are the family of all graphs (or, often, all finite graphs) that are H-free. [10] For instance the triangle-free graphs are the graphs that do not have a triangle graph as a subgraph.

  8. Graph minor - Wikipedia

    en.wikipedia.org/wiki/Graph_minor

    If F is a minor-closed family, then (because of the well-quasi-ordering property of minors) among the graphs that do not belong to F there is a finite set X of minor-minimal graphs. These graphs are forbidden minors for F: a graph belongs to F if and only if it does not contain as a minor any graph in X.

  9. Pseudoforest - Wikipedia

    en.wikipedia.org/wiki/Pseudoforest

    A directed 1-forest – most commonly called a functional graph (see below), sometimes maximal directed pseudoforest – is a directed graph in which each vertex has outdegree exactly one. [8] If D is a directed pseudoforest, the undirected graph formed by removing the direction from each edge of D is an undirected pseudoforest.