Search results
Results From The WOW.Com Content Network
The Spanning Tree Protocol (STP) is a network protocol that builds a loop-free logical topology for Ethernet networks. The basic function of STP is to prevent bridge loops and the broadcast radiation that results from them. Spanning tree also allows a network design to include backup links providing fault tolerance if an active link fails.
It returns a spanning arborescence rooted at of minimum weight, where the weight of an arborescence is defined to be the sum of its edge weights, () = (). The algorithm has a recursive description. Let f ( D , r , w ) {\displaystyle f(D,r,w)} denote the function which returns a spanning arborescence rooted at r {\displaystyle r} of minimum weight.
A bottleneck edge is the highest weighted edge in a spanning tree. A spanning tree is a minimum bottleneck spanning tree if the graph does not contain a spanning tree with a smaller bottleneck edge weight. [1] For a directed graph, a similar problem is known as Minimum Bottleneck Spanning Arborescence (MBSA).
A planar graph and its minimum spanning tree. Each edge is labeled with its weight, which here is roughly proportional to its length. A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. [1]
Common Internal Spanning Tree (CIST): Identifies regions in a network and administers the CIST root bridge for the network, for each region and for each spanning tree instance in each region. It's also the default spanning tree instance of MSTP so that any VLAN which isn't a member of a particular MSTI, will be a member of the CIST.
If is edge-unweighted every spanning tree possesses the same number of edges and thus the same weight. In the edge-weighted case, the spanning tree, the sum of the weights of the edges of which is lowest among all spanning trees of , is called a minimum spanning tree (MST). It is not necessarily unique.
A faster randomized minimum spanning tree algorithm based in part on Borůvka's algorithm due to Karger, Klein, and Tarjan runs in expected O(E) time. [9] The best known (deterministic) minimum spanning tree algorithm by Bernard Chazelle is also based in part on Borůvka's and runs in O(E α(E,V)) time, where α is the inverse Ackermann ...
Example of a MST: The minimum spanning tree of a planar graph.Each edge is labeled with its weight, which here is roughly proportional to its length. The distributed minimum spanning tree (MST) problem involves the construction of a minimum spanning tree by a distributed algorithm, in a network where nodes communicate by message passing.