When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ligand field theory - Wikipedia

    en.wikipedia.org/wiki/Ligand_field_theory

    The greater stabilization that results from metal-to-ligand bonding is caused by the donation of negative charge away from the metal ion, towards the ligands. This allows the metal to accept the σ bonds more easily. The combination of ligand-to-metal σ-bonding and metal-to-ligand π-bonding is a synergic effect, as each enhances the other.

  3. Inverted ligand field theory - Wikipedia

    en.wikipedia.org/wiki/Inverted_ligand_field_theory

    Ligand field molecular orbital (MO) bonding regimes for Werner-type (left), covalent (middle), and inverted ligand fields. [1] At the transition-metal - main group boundary, metal cations in organometallic complexes are more electronegative than the relatively more electropositive ligand atoms which act as z-type ligands.

  4. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    The p-orbitals oriented in the z-direction (p z) can overlap end-on forming a bonding (symmetrical) σ orbital and an antibonding σ* molecular orbital. In contrast to the sigma 1s MO's, the σ 2p has some non-bonding electron density at either side of the nuclei and the σ* 2p has some electron density between the nuclei.

  5. Ligand - Wikipedia

    en.wikipedia.org/wiki/Ligand

    In general, 'hard' metal ions prefer weak field ligands, whereas 'soft' metal ions prefer strong field ligands. According to the molecular orbital theory, the HOMO (Highest Occupied Molecular Orbital) of the ligand should have an energy that overlaps with the LUMO (Lowest Unoccupied Molecular Orbital) of the metal preferential.

  6. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    The symmetry properties of molecular orbitals means that delocalization is an inherent feature of molecular orbital theory and makes it fundamentally different from (and complementary to) valence bond theory, in which bonds are viewed as localized electron pairs, with allowance for resonance to account for delocalization.

  7. Molecular orbital theory - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_theory

    Molecular orbital theory was seen as a competitor to valence bond theory in the 1930s, before it was realized that the two methods are closely related and that when extended they become equivalent. Molecular orbital theory is used to interpret ultraviolet–visible spectroscopy (UV–VIS). Changes to the electronic structure of molecules can be ...

  8. Isolobal principle - Wikipedia

    en.wikipedia.org/wiki/Isolobal_principle

    Removal of a ligand is analogous to the removal of hydrogen of methane in the previous example resulting in a frontier orbital, which points toward the removed ligand. Cleaving the bond between the metal center and one ligand results in a ML − 5 radical complex. In order to satisfy the zero-charge criteria the metal center must be changed.

  9. Spin states (d electrons) - Wikipedia

    en.wikipedia.org/wiki/Spin_states_(d_electrons)

    Low-spin [Fe(NO 2) 6] 3− crystal field diagram. The Δ splitting of the d orbitals plays an important role in the electron spin state of a coordination complex. Three factors affect Δ: the period (row in periodic table) of the metal ion, the charge of the metal ion, and the field strength of the complex's ligands as described by the spectrochemical series.