When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Isotopes of hydrogen - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_hydrogen

    Deuterium, 2 H (atomic mass 2.014 101 777 844 (15) Da), the other stable hydrogen isotope, has one proton and one neutron in its nucleus, called a deuteron. 2 H comprises 26–184 ppm (by population, not mass) of hydrogen on Earth; the lower number tends to be found in hydrogen gas and higher enrichment (150 ppm) is typical of seawater .

  3. Deuterium - Wikipedia

    en.wikipedia.org/wiki/Deuterium

    Deuterium (hydrogen-2, symbol 2 H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, 1 H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more common 1 H has no neutrons. The name deuterium comes from Greek deuteros, meaning "second".

  4. Nuclear transmutation - Wikipedia

    en.wikipedia.org/wiki/Nuclear_transmutation

    Most stars carry out transmutation through fusion reactions involving hydrogen and helium, while much larger stars are also capable of fusing heavier elements up to iron late in their evolution. Elements heavier than iron, such as gold or lead, are created through elemental transmutations that can naturally occur in supernovae. One goal of ...

  5. Hydrogen - Wikipedia

    en.wikipedia.org/wiki/Hydrogen

    Fe 2 SiO 4 + H 2 O → 2 Fe 3 O 4 + SiO 2 +H 2. Closely related to this geological process is the Schikorr reaction: 3 Fe(OH) 2 → Fe 3 O 4 + 2 H 2 O + H 2. This process also is relevant to the corrosion of iron and steel in oxygen-free groundwater and in reducing soils below the water table. [citation needed]

  6. Big Bang nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Big_Bang_nucleosynthesis

    Once temperatures are lowered, out of every 16 nucleons (2 neutrons and 14 protons), 4 of these (25% of the total particles and total mass) combine quickly into one helium-4 nucleus. This produces one helium for every 12 hydrogens, resulting in a universe that is a little over 8% helium by number of atoms, and 25% helium by mass.

  7. Table of nuclides - Wikipedia

    en.wikipedia.org/wiki/Table_of_nuclides

    A table or chart of nuclides is a two-dimensional graph of isotopes of the elements, in which one axis represents the number of neutrons (symbol N) and the other represents the number of protons (atomic number, symbol Z) in the atomic nucleus. Each point plotted on the graph thus represents a nuclide of a known or hypothetical chemical element.

  8. Helium-4 - Wikipedia

    en.wikipedia.org/wiki/Helium-4

    The stability of helium-4 is the reason that hydrogen is converted to helium-4, and not deuterium (hydrogen-2) or helium-3 or other heavier elements during fusion reactions in the Sun. It is also partly responsible for the alpha particle being by far the most common type of baryonic particle to be ejected from an atomic nucleus; in other words ...

  9. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    A smaller fraction (about four per million) of free neutrons decay in so-called "two-body (neutron) decays", in which a proton, electron and antineutrino are produced as usual, but the electron fails to gain the 13.6 eV necessary energy to escape the proton (the ionization energy of hydrogen), and therefore simply remains bound to it, forming a ...