Search results
Results From The WOW.Com Content Network
Kelvin probe force microscopy (KPFM), also known as surface potential microscopy, is a noncontact variant of atomic force microscopy (AFM). [ 1 ] [ 2 ] [ 3 ] By raster scanning in the x,y plane the work function of the sample can be locally mapped for correlation with sample features.
An atomic force microscope on the left with controlling computer on the right. Atomic force microscopy [1] (AFM) gathers information by "feeling" or "touching" the surface with a mechanical probe. Piezoelectric elements that facilitate tiny but accurate and precise movements on (electronic) command enable precise scanning.
{{Information {{Information |Description= Atomic force microscope block diagram, laser and photodiodes detection, inspired by Atomic force microscope block diagram.png |Source=self-made |Date=21.02.2 File usage
The colloidal probe technique is commonly used to measure interaction forces acting between colloidal particles and/or planar surfaces in air or in solution. This technique relies on the use of an atomic force microscope (AFM). However, instead of a cantilever with a sharp AFM tip, one uses the colloidal probe. The colloidal probe consists of a ...
Non-contact atomic force microscopy (nc-AFM), also known as dynamic force microscopy (DFM), is a mode of atomic force microscopy, which itself is a type of scanning probe microscopy. In nc-AFM a sharp probe is moved close (order of Angstroms ) to the surface under study, the probe is then raster scanned across the surface, the image is then ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Dip pen nanolithography (DPN) is a scanning probe lithography technique where an atomic force microscope (AFM) tip is used to directly create patterns on a substrate. [1] It can be done on a range of substances with a variety of inks. A common example of this technique is exemplified by the use of alkane thiolates to imprint onto a gold surface ...
Piezoresponse force microscopy is a technique which since its inception and first implementation by Güthner and Dransfeld [1] has steadily attracted more and more interest. This is due in large part to the many benefits and few drawbacks that PFM offers researchers in varying fields from ferroelectrics, semiconductors and even biology. [ 2 ]