Search results
Results From The WOW.Com Content Network
A digitally tuned capacitor is an IC variable capacitor based on several technologies. MEMS , BST and SOI / SOS devices are available from a number of suppliers and vary in capacitance range, quality factor and resolution for different RF tuning applications.
RF MEMS switched capacitors are capacitive fixed-fixed beam switches with a low capacitance ratio. RF MEMS varactors are capacitive fixed-fixed beam switches which are biased below pull-in voltage. Other examples of RF MEMS switches are ohmic cantilever switches, and capacitive single pole N throw (SPNT) switches based on the axial gap wobble ...
A MEMS magnetic field sensor is a small-scale microelectromechanical systems (MEMS) device for detecting and measuring magnetic fields (magnetometer). Many of these operate by detecting effects of the Lorentz force : a change in voltage or resonant frequency may be measured electronically, or a mechanical displacement may be measured optically.
Microoptoelectromechanical systems (MOEMS), also known as optical MEMS, are integrations of mechanical, optical, and electrical systems that involve sensing or manipulating optical signals at a very small size. MOEMS includes a wide variety of devices, for example optical switch, optical cross-connect, tunable VCSEL, microbolometers.
MEMS clock generators are useful in complex systems that require multiple frequencies, such as data servers and telecom switches. MEMS real-time clocks are used in systems that require precise time measurements. Smart meters for gas and electricity are an example that is consuming significant quantities of these devices.
An early example of a MEMS device is the resonant-gate transistor, an adaptation of the MOSFET, developed by Robert A. Wickstrom for Harvey C. Nathanson in 1965. [4] Another early example is the resonistor, an electromechanical monolithic resonator patented by Raymond J. Wilfinger between 1966 and 1971.
An example is a nickel rod that tends to deform when it is placed in an external magnetic field. Another example is wrapping a series of electromagnetic induction coils around a metal tube in which a Terfenol-D material is placed. The coils generate a moving magnetic field that courses wavelike down the successive windings along the stator tube.
All diodes exhibit this variable junction capacitance, but varactors are manufactured to exploit the effect and increase the capacitance variation. The figure shows an example of a cross section of a varactor with the depletion layer formed of a p–n junction. This depletion layer can also be made of a MOS or a Schottky diode.