Search results
Results From The WOW.Com Content Network
This means that the time constant is the time elapsed after 63% of V max has been reached Setting for t = for the fall sets V(t) equal to 0.37V max, meaning that the time constant is the time elapsed after it has fallen to 37% of V max. The larger a time constant is, the slower the rise or fall of the potential of a neuron.
If the temperature of the environment is known beforehand, then a thermistor may be used to measure the value of the dissipation constant. For example, the thermistor may be used as a flow-rate sensor, since the dissipation constant increases with the rate of flow of a fluid past the thermistor.
A heatsink's thermal mass can be considered as a capacitor (storing heat instead of charge) and the thermal resistance as an electrical resistance (giving a measure of how fast stored heat can be dissipated). Together, these two components form a thermal RC circuit with an associated time constant given by the product of R and C. This quantity ...
An increase in this variable means the higher pole is further above the corner frequency. The y-axis is the ratio of the OCTC (open-circuit time constant) estimate to the true time constant. For the lowest pole use curve T_1; this curve refers to the corner frequency; and for the higher pole use curve T_2. The worst agreement is for τ 1 = τ 2.
The RC time constant, denoted τ (lowercase tau), the time constant (in seconds) of a resistor–capacitor circuit (RC circuit), is equal to the product of the circuit resistance (in ohms) and the circuit capacitance (in farads):
The thermal mass is connected to a reservoir of constant temperature through a link with thermal conductance, G. The temperature increase is ΔT = P/G and is measured with a resistive thermometer, allowing the determination of P. The intrinsic thermal time constant is τ = C/G.
The heat output of any electrical heating element can be regulated by regulating the electrical power input. PTC heating elements also can be regulated indirectly. For example, a PTC heating element with a sharp change in resistance at a particular temperature can be fitted with a constant voltage source and a variable-speed fan.
The general time- and transfer-constants (TTC) analysis [1] is the generalized version of the Cochran-Grabel (CG) method, [2] which itself is the generalized version of zero-value time-constants (ZVT), which in turn is the generalization of the open-circuit time constant method (OCT). [3]