Search results
Results From The WOW.Com Content Network
Summary of aerobic respiration. Glycolysis is the metabolic pathway that converts glucose (C 6 H 12 O 6) into pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine ...
Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into ATP, and then release waste products. [1] Cellular respiration is a vital process that occurs in the cells of all living organisms.
Glycolysis results in the breakdown of glucose, but several reactions in the glycolysis pathway are reversible and participate in the re-synthesis of glucose (gluconeogenesis). [9] Glycolysis was the first metabolic pathway discovered: As glucose enters a cell, it is immediately phosphorylated by ATP to glucose 6-phosphate in the irreversible ...
In some tissues and organisms, glycolysis is the sole method of energy production. [2] This pathway is common to both anaerobic and aerobic respiration. [1] Glycolysis consists of ten steps, split into two phases. [2] During the first phase, it requires the breakdown of two ATP molecules. [1]
"The metabolic pathway of glycolysis converts glucose to pyruvate via a series of intermediate metabolites. Each chemical modification (red box) is performed by a different enzyme. Steps 1 and 3 consume ATP (blue) and steps 7 and 10 produce ATP (yellow). Since steps 6-10 occur twice per glucose molecule, this leads to a net production of energy."
Substrate-level phosphorylation exemplified with the conversion of ADP to ATP. Substrate-level phosphorylation is a metabolism reaction that results in the production of ATP or GTP supported by the energy released from another high-energy bond that leads to phosphorylation of ADP or GDP to ATP or GTP (note that the reaction catalyzed by creatine kinase is not considered as "substrate-level ...
Pyruvate dehydrogenase complex (PDC) is a complex of three enzymes that converts pyruvate into acetyl-CoA by a process called pyruvate decarboxylation. [1] Acetyl-CoA may then be used in the citric acid cycle to carry out cellular respiration, and this complex links the glycolysis metabolic pathway to the citric acid cycle. Pyruvate ...
Glycolysis is summarized by the equation: C 6 H 12 O 6 + 2 ADP + 2 P i + 2 NAD + → 2 CH 3 COCOO − + 2 ATP + 2 NADH + 2 H 2 O + 2 H + CH 3 COCOO − is pyruvate, and P i is inorganic phosphate. Finally, pyruvate is converted to ethanol and CO 2 in two steps, regenerating oxidized NAD+ needed for glycolysis: 1. CH 3 COCOO − + H + → CH 3 ...