Search results
Results From The WOW.Com Content Network
A residual neural network (also referred to as a residual network or ResNet) [1] is a deep learning architecture in which the layers learn residual functions with reference to the layer inputs. It was developed in 2015 for image recognition , and won the ImageNet Large Scale Visual Recognition Challenge ( ILSVRC ) of that year.
Modern activation functions include the logistic function used in the 2012 speech recognition model developed by Hinton et al; [2] the ReLU used in the 2012 AlexNet computer vision model [3] [4] and in the 2015 ResNet model; and the smooth version of the ReLU, the GELU, which was used in the 2018 BERT model. [5]
Inception [1] is a family of convolutional neural network (CNN) for computer vision, introduced by researchers at Google in 2014 as GoogLeNet (later renamed Inception v1).). The series was historically important as an early CNN that separates the stem (data ingest), body (data processing), and head (prediction), an architectural design that persists in all modern
DeepDream is a computer vision program created by Google engineer Alexander Mordvintsev that uses a convolutional neural network to find and enhance patterns in images via algorithmic pareidolia, thus creating a dream-like appearance reminiscent of a psychedelic experience in the deliberately overprocessed images.
Shannon's diagram of a general communications system, showing the process by which a message sent becomes the message received (possibly corrupted by noise). seq2seq is an approach to machine translation (or more generally, sequence transduction) with roots in information theory, where communication is understood as an encode-transmit-decode process, and machine translation can be studied as a ...
The scope of Google’s ambitions were reflected in the company’s announcement, which introduced Gemini as the company’s “largest and most capable AI model” and declared a “Gemini era ...
This category is for particular subtypes of neural network, such as Recurrent neural network, or Convolutional neural network.Specific models (which have been trained to a particular purpose) or software implementations should not be placed in this category, but instead in Category:Neural network software or one of its descendants.
Caltech 101 is a data set of digital images created in September 2003 and compiled by Fei-Fei Li, Marco Andreetto, Marc 'Aurelio Ranzato and Pietro Perona at the California Institute of Technology.