When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shear flow - Wikipedia

    en.wikipedia.org/wiki/Shear_flow

    The concept of shear flow is particularly useful when analyzing semi-monocoque structures, which can be idealized using the skin-stringer model. In this model, the longitudinal members, or stringers, carry only axial stress, while the skin or web resists the externally applied torsion and shear force. [ 3 ]

  3. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.

  4. von Mises yield criterion - Wikipedia

    en.wikipedia.org/wiki/Von_Mises_yield_criterion

    Here is yield stress of the material in pure shear. As shown later in this article, at the onset of yielding, the magnitude of the shear yield stress in pure shear is √3 times lower than the tensile yield stress in the case of simple tension. Thus, we have: =

  5. Shear strength - Wikipedia

    en.wikipedia.org/wiki/Shear_strength

    This is only the average stress, actual stress distribution is not uniform. In real world applications, this equation only gives an approximation and the maximum shear stress would be higher. Stress is not often equally distributed across a part so the shear strength would need to be higher to account for the estimate. [2]

  6. Critical resolved shear stress - Wikipedia

    en.wikipedia.org/wiki/Critical_resolved_shear_stress

    The Schmid Factor for an axial applied stress in the [] direction, along the primary slip plane of (), with the critical applied shear stress acting in the [] direction can be calculated by quickly determining if any of the dot product between the axial applied stress and slip plane, or dot product of axial applied stress and shear stress ...

  7. Roark's Formulas for Stress and Strain - Wikipedia

    en.wikipedia.org/wiki/Roark's_Formulas_for_Stress...

    The book covers various subjects, including bearing and shear stress, experimental stress analysis, stress concentrations, material behavior, and stress and strain measurement. It also features expanded tables and cases, improved notations and figures within the tables, consistent table and equation numbering, and verification of correction ...

  8. Huber's equation - Wikipedia

    en.wikipedia.org/wiki/Huber's_equation

    Huber's equation, first derived by a Polish engineer Tytus Maksymilian Huber, is a basic formula in elastic material tension calculations, an equivalent of the equation of state, but applying to solids. In most simple expression and commonly in use it looks like this: [1]

  9. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    Assuming that the direction of the forces is known, the stress across M can be expressed simply by the single number , calculated simply with the magnitude of those forces, F and the cross sectional area, A. = Unlike normal stress, this simple shear stress is directed parallel to the cross-section considered, rather than perpendicular to it. [13]