Search results
Results From The WOW.Com Content Network
Schematic of the HPA axis (CRH, corticotropin-releasing hormone; ACTH, adrenocorticotropic hormone) Hypothalamus, pituitary gland, and adrenal cortex The hypothalamic–pituitary–adrenal axis (HPA axis or HTPA axis) is a complex set of direct influences and feedback interactions among three components: the hypothalamus (a part of the brain located below the thalamus), the pituitary gland (a ...
The hypothalamus is located below the thalamus and is part of the limbic system. [1] It forms the basal part of the diencephalon. All vertebrate brains contain a hypothalamus. [2] In humans, it is about the size of an almond. [3] The hypothalamus has the function of regulating certain metabolic processes and other activities of the autonomic ...
The norepinephrine from the LC has an excitatory effect on most of the brain, mediating arousal and priming the brain's neurons to be activated by stimuli. As an important homeostatic control center of the body, the locus coeruleus receives afferents from the hypothalamus.
After ovulation, the corpus luteum produces progesterone, which inhibits GnRH secretion from the hypothalamus and gonadotropin release from the anterior pituitary, thus terminating the estrogen-LH positive feedback loop. If conception occurs, the placenta will take over the secretion of progesterone; therefore the mother cannot ovulate again.
Once activated, norepinephrine and epinephrine are released directly into the blood by adrenomedullary cells where they act as the bodily mechanism for "fight-or-flight" responses. Because of this, the sympathoadrenal system plays a large role in maintaining glucose levels, sodium levels, blood pressure, and various other metabolic pathways ...
Norepinephrine" is also the international nonproprietary name given to the drug. [3] Regardless of which name is used for the substance itself, parts of the body that produce or are affected by it are referred to as noradrenergic. The general function of norepinephrine is to mobilize the brain and body for action.
The hypothalamus produces the hormones oxytocin and vasopressin in its endocrine cells (left). These are released at nerve endings in the posterior pituitary gland and then secreted into the systemic circulation. The hypothalamus releases tropic hormones into the hypophyseal portal system to the anterior pituitary (right).
The hypothalamus and the anterior pituitary are two out of the three endocrine glands that are important in cell signaling. They are both part of the HPA axis which is known to play a role in cell signaling in the nervous system. Hypothalamus: The hypothalamus is a key regulator of the autonomic nervous system.