Search results
Results From The WOW.Com Content Network
In the physical sciences, the wavenumber (or wave number), also known as repetency, [1] is the spatial frequency of a wave. Ordinary wavenumber is defined as the number of wave cycles divided by length; it is a physical quantity with dimension of reciprocal length , expressed in SI units of cycles per metre or reciprocal metre (m -1 ).
m s −2 [L][T] −2: Spatial position Position of a point in space, not necessarily a point on the wave profile or any line of propagation d, r: m [L] Wave profile displacement Along propagation direction, distance travelled (path length) by one wave from the source point r 0 to any point in space d (for longitudinal or transverse waves) L, d, r
Animation of two waves, the green wave moves to the right while blue wave moves to the left, the net red wave amplitude at each point is the sum of the amplitudes of the individual waves. Note that f ( x , t ) + g ( x , t ) = u ( x , t ) .
The concept that matter behaves like a wave was proposed by French physicist Louis de Broglie (/ d ə ˈ b r ɔɪ /) in 1924, and so matter waves are also known as de Broglie waves. The de Broglie wavelength is the wavelength , λ , associated with a particle with momentum p through the Planck constant , h : λ = h p . {\displaystyle \lambda ...
A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.
Formally, the wavelength version of Wien's displacement law states that the spectral radiance of black-body radiation per unit wavelength, peaks at the wavelength given by: = where T is the absolute temperature and b is a constant of proportionality called Wien's displacement constant, equal to 2.897 771 955... × 10 −3 m⋅K, [1] [2] or b ...
The stationary wave can be viewed as the sum of two traveling sinusoidal waves of oppositely directed velocities. [8] Consequently, wavelength, period, and wave velocity are related just as for a traveling wave. For example, the speed of light can be determined from observation of standing waves in a metal box containing an ideal vacuum.
While periodic travelling waves have been known as solutions of the wave equation since the 18th century, their study in nonlinear systems began in the 1970s. A key early research paper was that of Nancy Kopell and Lou Howard [1] which proved several fundamental results on periodic travelling waves in reaction–diffusion equations.