When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    In statistics, the logistic model (or logit model) is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis , logistic regression [ 1 ] (or logit regression ) estimates the parameters of a logistic model (the coefficients in the linear or non linear ...

  3. Ordered logit - Wikipedia

    en.wikipedia.org/wiki/Ordered_logit

    1 The model and the proportional odds assumption. 2 ... Generalized estimating equation; ... the ordered logit model or proportional odds logistic regression is an ...

  4. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    The formulation of binary logistic regression as a log-linear model can be directly extended to multi-way regression. That is, we model the logarithm of the probability of seeing a given output using the linear predictor as well as an additional normalization factor, the logarithm of the partition function:

  5. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    Regression models predict a value of the Y variable given known values of the X variables. Prediction within the range of values in the dataset used for model-fitting is known informally as interpolation. Prediction outside this range of the data is known as extrapolation. Performing extrapolation relies strongly on the regression assumptions.

  6. Generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_model

    The resulting model is known as logistic regression (or multinomial logistic regression in the case that K-way rather than binary values are being predicted). For the Bernoulli and binomial distributions, the parameter is a single probability, indicating the likelihood of occurrence of a single event.

  7. Hosmer–Lemeshow test - Wikipedia

    en.wikipedia.org/wiki/Hosmer–Lemeshow_test

    where b 0 and b 1 are specified by the logistic regression model: b 0 is the intercept; b 1 is the coefficient for x 1; For the logistic model of P(success) vs dose of caffeine, both graphs show that, for many doses, the estimated probability is not close to the probability observed in the data.

  8. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    The log-linear models can be thought of to be on a continuum with the two extremes being the simplest model and the saturated model. The simplest model is the model where all the expected frequencies are equal. This is true when the variables are not related. The saturated model is the model that includes all the model components.

  9. Mixed logit - Wikipedia

    en.wikipedia.org/wiki/Mixed_logit

    Mixed logit is a fully general statistical model for examining discrete choices.It overcomes three important limitations of the standard logit model by allowing for random taste variation across choosers, unrestricted substitution patterns across choices, and correlation in unobserved factors over time. [1]