When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pendulum (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Pendulum_(mechanics)

    The real period is, of course, the time it takes the pendulum to go through one full cycle. Paul Appell pointed out a physical interpretation of the imaginary period: [ 16 ] if θ 0 is the maximum angle of one pendulum and 180° − θ 0 is the maximum angle of another, then the real period of each is the magnitude of the imaginary period of ...

  3. Pendulum - Wikipedia

    en.wikipedia.org/wiki/Pendulum

    All that was necessary was to time the period of an ordinary (single pivot) pendulum at the first point, then transport the pendulum to the other point and time its period there. Since the pendulum's length was constant, from (1) the ratio of the gravitational accelerations was equal to the inverse of the ratio of the periods squared, and no ...

  4. Rayleigh–Lorentz pendulum - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Lorentz_pendulum

    The equation of the simple harmonic motion with frequency for the displacement () is given by ¨ + =. If the frequency is constant, the solution is simply given by = ⁡ (+).But if the frequency is allowed to vary slowly with time = (), or precisely, if the characteristic time scale for the frequency variation is much smaller than the time period of oscillation, i.e., | |, then it can be shown ...

  5. Conical pendulum - Wikipedia

    en.wikipedia.org/wiki/Conical_pendulum

    Monumental conical pendulum clock by Farcot, 1878. A conical pendulum consists of a weight (or bob) fixed on the end of a string or rod suspended from a pivot.Its construction is similar to an ordinary pendulum; however, instead of swinging back and forth along a circular arc, the bob of a conical pendulum moves at a constant speed in a circle or ellipse with the string (or rod) tracing out a ...

  6. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    The period of a mass attached to a pendulum of length l with gravitational acceleration is given by = This shows that the period of oscillation is independent of the amplitude and mass of the pendulum but not of the acceleration due to gravity, g {\displaystyle g} , therefore a pendulum of the same length on the Moon would swing more slowly due ...

  7. Seconds pendulum - Wikipedia

    en.wikipedia.org/wiki/Seconds_pendulum

    The time for one complete cycle, a left swing and a right swing, is called the period. The period depends on the length of the pendulum, and also to a slight degree on its weight distribution (the moment of inertia about its own center of mass) and the amplitude (width) of the pendulum's swing.

  8. Kater's pendulum - Wikipedia

    en.wikipedia.org/wiki/Kater's_pendulum

    The small weight (b) was adjusted with the adjusting screw, and the process repeated until the pendulum had the same period when swung from each pivot. By putting the measured period T, and the measured distance between the pivot blades L, into the period equation (1), g could be calculated very accurately. Kater performed 12 trials. [1]

  9. Cavendish experiment - Wikipedia

    en.wikipedia.org/wiki/Cavendish_experiment

    For the first 3 experiments the period was about 15 minutes and for the next 14 experiments the period was half of that, about 7.5 minutes. The period changed because after the third experiment Cavendish put in a stiffer wire. The torsion coefficient could be calculated from this and the mass and dimensions of the balance.