When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...

  3. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    The concept of a limit of a sequence is further generalized to the concept of a limit of a topological net, and is closely related to limit and direct limit in category theory. The limit inferior and limit superior provide generalizations of the concept of a limit which are particularly relevant when the limit at a point may not exist.

  4. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    The limit superior and limit inferior of a sequence are defined as = and = () ... This can be derived from Viète's formula for ...

  5. Set-theoretic limit - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_limit

    In mathematics, the limit of a sequence of sets,, … (subsets of a common set ) is a set whose elements are determined by the sequence in either of two equivalent ways: (1) by upper and lower bounds on the sequence that converge monotonically to the same set (analogous to convergence of real-valued sequences) and (2) by convergence of a sequence of indicator functions which are themselves ...

  6. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    Relation to limits of sequences. ... can also be used to help prove many of the formula given ... Limit superior and limit inferior – Bounds of a sequence ...

  7. Limit of a sequence - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_sequence

    A limit of a sequence of points () in a topological space is a special case of a limit of a function: the domain is in the space {+}, with the induced topology of the affinely extended real number system, the range is , and the function argument tends to +, which in this space is a limit point of .

  8. Cauchy–Hadamard theorem - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Hadamard_theorem

    Consider the formal power series in one complex variable z of the form = = where ,.. Then the radius of convergence of f at the point a is given by = (| | /) where lim sup denotes the limit superior, the limit as n approaches infinity of the supremum of the sequence values after the nth position.

  9. Fatou–Lebesgue theorem - Wikipedia

    en.wikipedia.org/wiki/Fatou–Lebesgue_theorem

    Here the limit inferior and the limit superior of the f n are taken pointwise. The integral of the absolute value of these limiting functions is bounded above by the integral of g. Since the middle inequality (for sequences of real numbers) is always true, the directions of the other inequalities are easy to remember.