Search results
Results From The WOW.Com Content Network
Therefore electrostatic induction ensures that the electric field everywhere inside a conductive object is zero. A remaining question is how large the induced charges are. The movement of charges is caused by the force exerted on them by the electric field of the external charged object, by Coulomb's law .
Faraday's law of induction (or simply Faraday's law) is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction , is the fundamental operating principle of transformers , inductors , and many types of electric ...
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction .
The electrostatic field (lines with arrows) of a nearby positive charge (+) causes the mobile charges in conductive objects to separate due to electrostatic induction. Negative charges (blue) are attracted and move to the surface of the object facing the external charge. Positive charges (red) are repelled and move to the surface facing away ...
where the c ij with i = j are called the coefficients of capacity and the c ij with i ≠ j are called the coefficients of electrostatic induction. [1] For a system of two spherical conductors held at the same potential, [2] = (+), = (+)
The publication of the equations marked the unification of a theory for previously separately described phenomena: magnetism, electricity, light, and associated radiation. Since the mid-20th century, it has been understood that Maxwell's equations do not give an exact description of electromagnetic phenomena, but are instead a classical limit ...
The induction process is reversible: in Procedure 4, when C is removed, the attraction of the opposite charges cause them to intermingle again, and the charge on the surfaces reduces to zero. It is the electrostatic field of the charged object C which causes the mobile charges to move.
The history of electromagnetic induction, a facet of electromagnetism, began with observations of the ancients: electric charge or static electricity (rubbing silk on amber), electric current , and magnetic attraction . Understanding the unity of these forces of nature, and the scientific theory of electromagnetism was initiated and achieved ...