Search results
Results From The WOW.Com Content Network
Stars that have magnitudes between 1.5 and 2.5 are called second-magnitude; there are some 20 stars brighter than 1.5, which are first-magnitude stars (see the list of brightest stars). For example, Sirius is magnitude −1.46, Arcturus is −0.04, Aldebaran is 0.85, Spica is 1.04, and Procyon is 0.34.
Main-sequence stars vary in surface temperature from approximately 2,000 to 50,000 K, whereas more-evolved stars – in particular, newly-formed white dwarfs – can have surface temperatures above 100,000 K. [3] Physically, the classes indicate the temperature of the star's atmosphere and are normally listed from hottest to coldest.
Many TNOs are often just assumed to have Pluto's density of 2.0 g/cm 3, but it is just as likely that they have a comet-like density of only 0.5 g/cm 3. [ 4 ] For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 ...
−0.83: star Eta Carinae: seen from Earth apparent brightness as a supernova impostor in April 1843 −0.72: star Canopus: seen from Earth 2nd brightest star in night sky [46] −0.55: planet Saturn: seen from Earth maximum brightness near opposition and perihelion when the rings are angled toward Earth [42] −0.3: Halley's comet: seen from Earth
A class of extrasolar planets whose characteristics are similar to Jupiter, but that have high surface temperatures because they orbit very close—between approximately 0.015 and 0.5 AU (2.2 × 10 ^ 6 and 74.8 × 10 ^ 6 km)—to their parent stars, whereas Jupiter orbits its parent star (the Sun) at 5.2 AU (780 × 10 ^ 6 km), causing low ...
A difference of 5 magnitudes between the absolute magnitudes of two objects corresponds to a ratio of 100 in their luminosities, and a difference of n magnitudes in absolute magnitude corresponds to a luminosity ratio of 100 n/5. For example, a star of absolute magnitude M V = 3.0 would be 100 times as luminous as a star of absolute magnitude M ...
Many of these planets are of considerable size, approaching the mass of small stars, while many newly discovered brown dwarfs are, conversely, small enough to be considered planets. [81] The material difference between a low-mass star and a large gas giant is not clear-cut; apart from size and relative temperature, there is little to separate a ...
A-type star In the Harvard spectral classification system, a class of main-sequence star having spectra dominated by Balmer absorption lines of hydrogen. Stars of spectral class A are typically blue-white or white in color, measure between 1.4 and 2.1 times the mass of the Sun, and have surface temperatures of 7,600–10,000 kelvin.