Search results
Results From The WOW.Com Content Network
The response of the magnetic moment to a magnetic field boosts the response of the coil wrapped around it. Low coercivity reduces that energy loss associated with hysteresis. Magnetic hysteresis material (soft nickel-iron rods) has been used in damping the angular motion of satellites in low Earth orbit since the dawn of the space age. [5]
This is one of the most popular models of magnetic hysteresis. Its main advantage is the fact that this model enables connection with physical parameters of the magnetic material. [2] Jiles–Atherton model enables calculation of minor and major hysteresis loops. [1] The original Jiles–Atherton model is suitable only for isotropic materials. [1]
The shape of the hysteresis loop has a strong dependence on the angle between the magnetic field and the easy axis (Figure 3). If the two are parallel (θ = 0), the hysteresis loop is at its biggest (with m h = h s = 1 in normalized units). The magnetization starts parallel to the field and does not rotate until it becomes unstable and jumps to ...
The curves form a hysteresis loop. Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of the moment often form a loop or hysteresis curve, where there are ...
Typically the coercivity of a magnetic material is determined by measurement of the magnetic hysteresis loop, also called the magnetization curve, as illustrated in the figure above. The apparatus used to acquire the data is typically a vibrating-sample or alternating-gradient magnetometer. The applied field where the data line crosses zero is ...
Calculated magnetization curve for a superconducting slab, based on Bean's model. The superconducting slab is initially at H = 0. Increasing H to critical field H* causes the blue curve; dropping H back to 0 and reversing direction to increase it to -H* causes the green curve; dropping H back to 0 again and increase H to H* causes the orange curve.
The geometry of a Rowland's ring is usually a toroid of magnetic material around which is closely wound a magnetization coil consisting of a large number of windings to magnetize the material, and a sampling coil consisting of a smaller number of windings to sample the induced magnetic flux.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.