When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Logarithmic differentiation - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_differentiation

    It can also be useful when applied to functions raised to the power of variables or functions. Logarithmic differentiation relies on the chain rule as well as properties of logarithms (in particular, the natural logarithm, or the logarithm to the base e) to transform products into sums and divisions into subtractions.

  3. Logarithmic derivative - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_derivative

    Behind the use of the logarithmic derivative lie two basic facts about GL 1, that is, the multiplicative group of real numbers or other field. The differential operator X d d X {\displaystyle X{\frac {d}{dX}}} is invariant under dilation (replacing X by aX for a constant).

  4. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): (⁡) ′ = ′, wherever is positive. Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.

  5. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.

  6. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    The logarithm is denoted "log b x" (pronounced as "the logarithm of x to base b", "the base-b logarithm of x", or most commonly "the log, base b, of x "). An equivalent and more succinct definition is that the function log b is the inverse function to the function x ↦ b x {\displaystyle x\mapsto b^{x}} .

  7. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    Using that the logarithm of a product is the sum of the logarithms of the factors, the sum rule for derivatives gives immediately ⁡ = = ⁡ (). The last above expression of the derivative of a product is obtained by multiplying both members of this equation by the product of the f i . {\displaystyle f_{i}.}

  8. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    Once the derivatives of a few simple functions are known, the derivatives of other functions are more easily computed using rules for obtaining derivatives of more complicated functions from simpler ones. This process of finding a derivative is known as differentiation. [28]

  9. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The multiple valued version of log(z) is a set, but it is easier to write it without braces and using it in formulas follows obvious rules. log(z) is the set of complex numbers v which satisfy e v = z; arg(z) is the set of possible values of the arg function applied to z. When k is any integer: