When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    Other methods that can be used are the column-updating method, the inverse column-updating method, the quasi-Newton least squares method and the quasi-Newton inverse least squares method. More recently quasi-Newton methods have been applied to find the solution of multiple coupled systems of equations (e.g. fluid–structure interaction ...

  3. Broyden's method - Wikipedia

    en.wikipedia.org/wiki/Broyden's_method

    In numerical analysis, Broyden's method is a quasi-Newton method for finding roots in k variables. It was originally described by C. G. Broyden in 1965. [1]Newton's method for solving f(x) = 0 uses the Jacobian matrix, J, at every iteration.

  4. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The popular modifications of Newton's method, such as quasi-Newton methods or Levenberg-Marquardt algorithm mentioned above, also have caveats: For example, it is usually required that the cost function is (strongly) convex and the Hessian is globally bounded or Lipschitz continuous, for example this is mentioned in the section "Convergence" in ...

  5. Gauss–Newton algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Newton_algorithm

    Note that quasi-Newton methods can minimize general real-valued functions, whereas Gauss–Newton, Levenberg–Marquardt, etc. fits only to nonlinear least-squares problems. Another method for solving minimization problems using only first derivatives is gradient descent. However, this method does not take into account the second derivatives ...

  6. Symmetric rank-one - Wikipedia

    en.wikipedia.org/wiki/Symmetric_rank-one

    The Symmetric Rank 1 (SR1) method is a quasi-Newton method to update the second derivative (Hessian) based on the derivatives (gradients) calculated at two points. It is a generalization to the secant method for a multidimensional problem.

  7. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Newton's method — based on linear approximation around the current iterate; quadratic convergence Kantorovich theorem — gives a region around solution such that Newton's method converges; Newton fractal — indicates which initial condition converges to which root under Newton iteration; Quasi-Newton method — uses an approximation of the ...

  8. Davidon–Fletcher–Powell formula - Wikipedia

    en.wikipedia.org/wiki/Davidon–Fletcher–Powell...

    It was the first quasi-Newton method to generalize the secant method to a multidimensional problem. This update maintains the symmetry and positive definiteness of the Hessian matrix . Given a function f ( x ) {\displaystyle f(x)} , its gradient ( ∇ f {\displaystyle \nabla f} ), and positive-definite Hessian matrix B {\displaystyle B} , the ...

  9. Iterative method - Wikipedia

    en.wikipedia.org/wiki/Iterative_method

    In the absence of rounding errors, direct methods would deliver an exact solution (for example, solving a linear system of equations = by Gaussian elimination). Iterative methods are often the only choice for nonlinear equations. However, iterative methods are often useful even for linear problems involving many variables (sometimes on the ...