When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nearest neighbor search - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor_search

    An approximate nearest neighbor search algorithm is allowed to return points whose distance from the query is at most times the distance from the query to its nearest points. The appeal of this approach is that, in many cases, an approximate nearest neighbor is almost as good as the exact one.

  3. (1+ε)-approximate nearest neighbor search - Wikipedia

    en.wikipedia.org/wiki/(1+ε)-approximate_nearest...

    A solution to the (1+ ε)-approximate nearest neighbor search is a point or multiple points within distance (1+ ε) R from a query point, where R is the distance between the query point and its true nearest neighbor. [1] Reasons to approximate nearest neighbor search include the space and time costs of exact solutions in high-dimensional spaces ...

  4. Hierarchical navigable small world - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_navigable...

    The Hierarchical navigable small world (HNSW) algorithm is a graph-based approximate nearest neighbor search technique used in many vector databases. [1] [2] Nearest neighbor search without an index involves computing the distance from the query to each point in the database, which for large datasets is computationally prohibitive.

  5. Best bin first - Wikipedia

    en.wikipedia.org/wiki/Best_bin_first

    Best bin first is a search algorithm that is designed to efficiently find an approximate solution to the nearest neighbor search problem in very-high-dimensional spaces. The algorithm is based on a variant of the kd-tree search algorithm which makes indexing higher-dimensional spaces possible. Best bin first is an approximate algorithm which ...

  6. Locality-sensitive hashing - Wikipedia

    en.wikipedia.org/wiki/Locality-sensitive_hashing

    In computer science, locality-sensitive hashing (LSH) is a fuzzy hashing technique that hashes similar input items into the same "buckets" with high probability. [1] ( The number of buckets is much smaller than the universe of possible input items.) [1] Since similar items end up in the same buckets, this technique can be used for data clustering and nearest neighbor search.

  7. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    Using an approximate nearest neighbor search algorithm makes k-NN computationally tractable even for large data sets. Many nearest neighbor search algorithms have been proposed over the years; these generally seek to reduce the number of distance evaluations actually performed. k-NN has some strong consistency results.

  8. k-d tree - Wikipedia

    en.wikipedia.org/wiki/K-d_tree

    Additionally, even in low-dimensional space, if the average pairwise distance between the k nearest neighbors of the query point is significantly less than the average distance between the query point and each of the k nearest neighbors, the performance of nearest neighbor search degrades towards linear, since the distances from the query point ...

  9. Nearest neighbor - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor

    Nearest neighbor graph in geometry; Nearest neighbor function in probability theory; Nearest neighbor decoding in coding theory; The k-nearest neighbor algorithm in machine learning, an application of generalized forms of nearest neighbor search and interpolation; The nearest neighbour algorithm for approximately solving the travelling salesman ...