Search results
Results From The WOW.Com Content Network
In probability and statistics, a nearest neighbor function, nearest neighbor distance distribution, [1] nearest-neighbor distribution function [2] or nearest neighbor distribution [3] is a mathematical function that is defined in relation to mathematical objects known as point processes, which are often used as mathematical models of physical phenomena representable as randomly positioned ...
k-nearest neighbor search identifies the top k nearest neighbors to the query. This technique is commonly used in predictive analytics to estimate or classify a point based on the consensus of its neighbors. k-nearest neighbor graphs are graphs in which every point is connected to its k nearest neighbors.
Nearest neighbor graph in geometry; Nearest neighbor function in probability theory; Nearest neighbor decoding in coding theory; The k-nearest neighbor algorithm in machine learning, an application of generalized forms of nearest neighbor search and interpolation; The nearest neighbour algorithm for approximately solving the travelling salesman ...
The k-nearest neighbour classifier can be viewed as assigning the k nearest neighbours a weight / and all others 0 weight. This can be generalised to weighted nearest neighbour classifiers. That is, where the i th nearest neighbour is assigned a weight , with = =. An analogous result on the strong consistency of weighted nearest neighbour ...
PDF of the NN distances in an ideal gas. We want to calculate probability distribution function of distance to the nearest neighbor (NN) particle. (The problem was first considered by Paul Hertz; [1] for a modern derivation see, e.g.,. [2])
The nearest neighbour algorithm was one of the first algorithms used to solve the travelling salesman problem approximately. In that problem, the salesman starts at a random city and repeatedly visits the nearest city until all have been visited. The algorithm quickly yields a short tour, but usually not the optimal one.
The interpolated surface (meaning the kernel shape, not the image) is smoother than corresponding surfaces obtained by bilinear interpolation or nearest-neighbor interpolation. Bicubic interpolation can be accomplished using either Lagrange polynomials, cubic splines, or cubic convolution algorithm.
A point location data structure can be built on top of the Voronoi diagram in order to answer nearest neighbor queries, where one wants to find the object that is closest to a given query point. Nearest neighbor queries have numerous applications. For example, one might want to find the nearest hospital or the most similar object in a database.