Search results
Results From The WOW.Com Content Network
The curves form a hysteresis loop. Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of the moment often form a loop or hysteresis curve, where there are ...
Hysteresivity derives from “hysteresis”, meaning “lag”. It is the tendency to react slowly to an outside force, or to not return completely to its original state. Whereas the area within a hysteresis loop represents energy dissipated to heat and is an extensive quantity with units of energy, the hysteresivity represents the fraction of the elastic energy that is lost to heat, and is an ...
The response of the magnetic moment to a magnetic field boosts the response of the coil wrapped around it. Low coercivity reduces that energy loss associated with hysteresis. Magnetic hysteresis material (soft nickel-iron rods) has been used in damping the angular motion of satellites in low Earth orbit since the dawn of the space age. [5]
This is one of the most popular models of magnetic hysteresis. Its main advantage is the fact that this model enables connection with physical parameters of the magnetic material. [2] Jiles–Atherton model enables calculation of minor and major hysteresis loops. [1] The original Jiles–Atherton model is suitable only for isotropic materials. [1]
The structure of Earth can be defined in two ways: by mechanical properties such as rheology, or chemically. Mechanically, it can be divided into lithosphere, asthenosphere, mesospheric mantle, outer core, and the inner core. Chemically, Earth can be divided into the crust, upper mantle, lower mantle, outer core, and inner core. [6]
The resulting plot of adsorbed volume versus relative humidity yields a hysteresis "loop." [2] This loop is seen in all hysteresis governed processes and gives direct meaning the term "path dependent." The concept of hysteresis was explained indirectly in the curvature section of this article; however, here we are speaking in terms of a single ...
In structural engineering, the Bouc–Wen model of hysteresis is a hysteretic model typically employed to describe non-linear hysteretic systems. It was introduced by Robert Bouc [1] [2] and extended by Yi-Kwei Wen, [3] who demonstrated its versatility by producing a variety of hysteretic patterns. This model is able to capture, in analytical ...
A nonlinear dynamical system exhibits chaotic hysteresis if it simultaneously exhibits chaotic dynamics (chaos theory) and hysteresis.As the latter involves the persistence of a state, such as magnetization, after the causal or exogenous force or factor is removed, it involves multiple equilibria for given sets of control conditions.