When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    At this point we can either integrate directly, or we can first change the integrand to 2 cos 6x − 4 cos 4x + 2 cos 2x and continue from there. Either method gives Either method gives ∫ sin 2 ⁡ x cos ⁡ 4 x d x = − 1 24 sin ⁡ 6 x + 1 8 sin ⁡ 4 x − 1 8 sin ⁡ 2 x + C . {\displaystyle \int \sin ^{2}x\cos 4x\,dx=-{\frac {1}{24 ...

  3. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    For the special antiderivatives involving trigonometric functions, see Trigonometric integral. [ 1 ] Generally, if the function sin ⁡ x {\displaystyle \sin x} is any trigonometric function, and cosx {\displaystyle \cos x} is its derivative,

  4. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    For this reason, the Euler method is said to be a first-order method, while the midpoint method is second order. We can extrapolate from the above table that the step size needed to get an answer that is correct to three decimal places is approximately 0.00001, meaning that we need 400,000 steps.

  5. Trigonometric integral - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_integral

    Si(x) (blue) and Ci(x) (green) shown on the same plot. Sine integral in the complex plane, plotted with a variant of domain coloring. Cosine integral in the complex plane. Note the branch cut along the negative real axis. In mathematics, trigonometric integrals are a family of nonelementary integrals involving trigonometric functions.

  6. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle...

    Leonhard Euler used it to evaluate the integral / (+ ⁡) in his 1768 integral calculus textbook, [3] and Adrien-Marie Legendre described the general method in 1817. [4] The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. [5]

  7. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    r = | z | = √ x 2 + y 2 is the magnitude of z and; φ = arg z = atan2(y, x). φ is the argument of z, i.e., the angle between the x axis and the vector z measured counterclockwise in radians, which is defined up to addition of 2π. Many texts write φ = tan −1 ⁠ y / x ⁠ instead of φ = atan2(y, x), but the first equation needs ...

  8. Clenshaw–Curtis quadrature - Wikipedia

    en.wikipedia.org/wiki/Clenshaw–Curtis_quadrature

    A simple way of understanding the algorithm is to realize that Clenshaw–Curtis quadrature (proposed by those authors in 1960) [3] amounts to integrating via a change of variable x = cos(θ). The algorithm is normally expressed for integration of a function f(x) over the interval [−1,1] (any other interval can be obtained by appropriate ...

  9. Integration by reduction formulae - Wikipedia

    en.wikipedia.org/wiki/Integration_by_reduction...

    In integral calculus, integration by reduction formulae is a method relying on recurrence relations. It is used when an expression containing an integer parameter , usually in the form of powers of elementary functions, or products of transcendental functions and polynomials of arbitrary degree , can't be integrated directly.