Search results
Results From The WOW.Com Content Network
A 5-tube superheterodyne receiver manufactured by Toshiba circa 1955 Superheterodyne transistor radio circuit circa 1975. A superheterodyne receiver, often shortened to superhet, is a type of radio receiver that uses frequency mixing to convert a received signal to a fixed intermediate frequency (IF) which can be more conveniently processed than the original carrier frequency.
A schematic of a superhet AM receiver. Note that the radio includes an AGC loop in order to maintain the RF and IF stages in their linear region, and to produce an audio output not dependent on the signal power received. Here we show block diagrams for typical superheterodyne receivers for AM and FM broadcast respectively.
Block diagram of a superheterodyne receiver. The dotted line indicates that the RF filter and local oscillator must be tuned in tandem. The superheterodyne receiver, invented in 1918 by Edwin Armstrong [10] is the design used in almost all modern receivers [11] [9] [12] [13] except a few specialized applications.
An important and widely used application of the heterodyne technique is in the superheterodyne receiver (superhet). In the typical superhet, the incoming radio frequency signal from the antenna is mixed (heterodyned) with a signal from a local oscillator (LO) to produce a lower fixed frequency signal called the intermediate frequency (IF
Invented by Edwin Armstrong in 1918 during World War 1, the superheterodyne is the design used in almost all modern radio receivers. The incoming radio signal from the antenna (left) is passed through an RF filter to attenuate some undesired signals, amplified in a radio frequency (RF) amplifier, and mixed with an unmodulated sine wave from a ...
Block diagram of a superheterodyne receiver. The RF front end consists of the components on the left colored red. In a radio receiver circuit, the RF front end, short for radio frequency front end, is a generic term for all the circuitry between a receiver's antenna input up to and including the mixer stage. [1]
Image response (or more correctly, image response rejection ratio, or IMRR) is a measure of performance of a radio receiver that operates on the superheterodyne principle. [1] In such a radio receiver, a local oscillator (LO) is used to heterodyne or "beat" against the incoming radio frequency (RF), generating sum and difference frequencies.
The result was the RCA Radiola AR-812 and Radiola VIII Superheterodynes in 1924, the world's first consumer superheterodyne receivers. In 1924, these cost $224 and $475 respectively. [3] Up to 1930, RCA controlled the superheterodyne patent, and any radio manufacturer that wanted to build one had to pay royalties to RCA.