Search results
Results From The WOW.Com Content Network
At present, syllogism is used exclusively as the method used to reach a conclusion closely resembling the "syllogisms" of traditional logic texts: two premises followed by a conclusion each of which is a categorical sentence containing all together three terms, two extremes which appear in the conclusion and one middle term which appears in ...
The study of arguments using categorical statements (i.e., syllogisms) forms an important branch of deductive reasoning that began with the Ancient Greeks. The Ancient Greeks such as Aristotle identified four primary distinct types of categorical proposition and gave them standard forms (now often called A, E, I, and O).
Categorical distribution, a probability distribution; Categorical logic, a branch of category theory within mathematics with notable connections to theoretical computer science; Categorical syllogism, a kind of logical argument; Categorical proposition, a part of deductive reasoning; Categorization; Categorical perception; Category theory in ...
A syllogism (Ancient Greek: συλλογισμός, syllogismos, 'conclusion, inference') is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true.
In argumentation theory or informal logic, an argument form is sometimes seen as a broader notion than the logical form. [8] It consists of stripping out all spurious grammatical features from the sentence (such as gender, and passive forms), and replacing all the expressions specific to the subject matter of the argument by schematic variables ...
Syllogistic fallacies – logical fallacies that occur in syllogisms. Affirmative conclusion from a negative premise (illicit negative) – a categorical syllogism has a positive conclusion, but at least one negative premise. [11] Fallacy of exclusive premises – a categorical syllogism that is invalid because both of its premises are negative ...
Categorical logic is the branch of mathematics in which tools and concepts from category theory are applied to the study of mathematical logic. It is also notable for its connections to theoretical computer science. [1] In broad terms, categorical logic represents both syntax and semantics by a category, and an interpretation by a functor.
A theory is κ-categorical (or categorical in κ) if it has exactly one model of cardinality κ up to isomorphism. Morley's categoricity theorem is a theorem of Michael D. Morley ( 1965 ) stating that if a first-order theory in a countable language is categorical in some uncountable cardinality , then it is categorical in all uncountable ...