Search results
Results From The WOW.Com Content Network
Graphs of the inverse hyperbolic functions The hyperbolic functions sinh, cosh, and tanh with respect to a unit hyperbola are analogous to circular functions sin, cos, tan with respect to a unit circle. The argument to the hyperbolic functions is a hyperbolic angle measure.
However, the discriminant of this equation is positive, so this equation has three real roots (of which only one is the solution for the cosine of the one-third angle). None of these solutions are reducible to a real algebraic expression , as they use intermediate complex numbers under the cube roots .
The Gudermannian function gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers. The graph of the function a cosh(x/a) is the catenary, the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from its original state, some details may not fully reflect the modified file.
Trigonometry (from Ancient Greek τρίγωνον (trígōnon) 'triangle' and μέτρον (métron) 'measure') [1] is a branch of mathematics concerned with relationships between angles and side lengths of triangles.
The equation for the drawn line is y = (1 + x)t. The equation for the intersection of the line and circle is then a quadratic equation involving t. The two solutions to this equation are (−1, 0) and (cos φ, sin φ). This allows us to write the latter as rational functions of t (solutions are given below).
Rapidity is the parameter expressing variability of an event on the hyperbola which represents the future events one time unit away from the origin O. These events can be expressed (sinh w, cosh w) where sinh is the hyperbolic sine and cosh is the hyperbolic cosine.
To prove the law of tangents one can start with the law of sines: = =, where is the diameter of the circumcircle, so that = and = .. It follows that