When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Entropy and life - Wikipedia

    en.wikipedia.org/wiki/Entropy_and_life

    Research concerning the relationship between the thermodynamic quantity entropy and both the origin and evolution of life began around the turn of the 20th century. In 1910 American historian Henry Adams printed and distributed to university libraries and history professors the small volume A Letter to American Teachers of History proposing a theory of history based on the second law of ...

  3. Biological thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Biological_thermodynamics

    Biological thermodynamics (Thermodynamics of biological systems) is a science that explains the nature and general laws of thermodynamic processes occurring in living organisms as nonequilibrium thermodynamic systems that convert the energy of the Sun and food into other types of energy.

  4. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    For example, in the Carnot cycle, while the heat flow from a hot reservoir to a cold reservoir represents the increase in the entropy in a cold reservoir, the work output, if reversibly and perfectly stored, represents the decrease in the entropy which could be used to operate the heat engine in reverse, returning to the initial state; thus the ...

  5. Entropy (order and disorder) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(order_and_disorder)

    Owing to these early developments, the typical example of entropy change ΔS is that associated with phase change. In solids, for example, which are typically ordered on the molecular scale, usually have smaller entropy than liquids, and liquids have smaller entropy than gases and colder gases have smaller entropy than hotter gases.

  6. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    The third law of thermodynamics states: As the temperature of a system approaches absolute zero, all processes cease and the entropy of the system approaches a minimum value. This law of thermodynamics is a statistical law of nature regarding entropy and the impossibility of reaching absolute zero of temperature. This law provides an absolute ...

  7. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...

  8. Irreversible process - Wikipedia

    en.wikipedia.org/wiki/Irreversible_process

    An irreversible process increases the total entropy of the system and its surroundings. The second law of thermodynamics can be used to determine whether a hypothetical process is reversible or not. Intuitively, a process is reversible if there is no dissipation. For example, Joule expansion is irreversible because initially the system is not ...

  9. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    Here, U is internal energy, T is absolute temperature, S is entropy, P is pressure, and V is volume. This is only one expression of the fundamental thermodynamic relation. It may be expressed in other ways, using different variables (e.g. using thermodynamic potentials). For example, the fundamental relation may be expressed in terms of the ...