Search results
Results From The WOW.Com Content Network
The Schottky diode (named after the German physicist Walter H. Schottky), also known as Schottky barrier diode or hot-carrier diode, is a semiconductor diode formed by the junction of a semiconductor with a metal. It has a low forward voltage drop and a very fast switching action.
A schottky diode can be used to minimize the switching losses caused by the reverse recovery of a regular PN diode. [11] The switching losses are proportional to the switching frequency. In a complete real-world buck converter, there is also a command circuit to regulate the output voltage or the inductor current.
A Schottky diode is a single metal–semiconductor junction, used for its rectifying properties. Schottky diodes are often the most suitable kind of diode when a low forward voltage drop is desired, such as in a high-efficiency DC power supply. Also, because of their majority-carrier conduction mechanism, Schottky diodes can achieve greater ...
Semiconductor characterization techniques are used to characterize a semiconductor material or device (p–n junction, Schottky diode, solar cell, etc.).Some examples of semiconductor properties that could be characterized include the depletion width, carrier concentration, carrier generation and recombination rates, carrier lifetimes, defect concentration, and trap states.
This allows the diode to operate at higher signal frequencies, at the expense of a higher forward voltage drop. Gold-doped diodes are faster than other p–n diodes (but not as fast as Schottky diodes). They also have less reverse-current leakage than Schottky diodes (but not as good as other p–n diodes). [43] [44] A typical example is the 1N914.
Two-stage charge pump with DC voltage supply and a pump control signal S 0 Dickson charge pump with diodes Dickson charge pump with MOSFETs PLL charge pump. A charge pump is a kind of DC-to-DC converter that uses capacitors for energetic charge storage to raise or lower voltage.
The Schottky diode, also known as the Schottky-barrier diode, was theorized for years, but was first practically realized as a result of the work of Atalla and Kahng during 1960–1961. [ 23 ] [ 24 ] They published their results in 1962 and called their device the "hot electron" triode structure with semiconductor-metal emitter. [ 25 ]
The German physicist Walter H. Schottky formulated a theory predicting the Schottky effect, which led to the Schottky diode and later Schottky transistors. For the same power dissipation, Schottky transistors have a faster switching speed than conventional transistors because the Schottky diode prevents the transistor from saturating and ...