When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    A variety of data re-sampling techniques are implemented in the imbalanced-learn package [1] compatible with the scikit-learn Python library. The re-sampling techniques are implemented in four different categories: undersampling the majority class, oversampling the minority class, combining over and under sampling, and ensembling sampling.

  3. Comparison of code generation tools - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_code...

    Free GeneXus: GeneXus Cross Platform (multiple) 1991 v17 Proprietary: Genshi (templating language) Edgewall Software cross-platform (Python) 2006-08-03 0.5.1 2008-07-09 Jinja (Template engine) Pocoo team cross-platform (Python) 2.1.1 BSD: Kid (templating language) Ryan Tomayko cross-platform (Python) 0.9.6 2006-12-20 Mako: Michael Bayer

  4. Local case-control sampling - Wikipedia

    en.wikipedia.org/wiki/Local_case-control_sampling

    In practice, the pilot may come from prior knowledge or training using a subsample of the dataset. The algorithm is most effective when the underlying dataset is imbalanced. It exploits the structures of conditional imbalanced datasets more efficiently than alternative methods, such as case control sampling and weighted case control sampling.

  5. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  6. Confusion matrix - Wikipedia

    en.wikipedia.org/wiki/Confusion_matrix

    For example, if there were 95 cancer samples and only 5 non-cancer samples in the data, a particular classifier might classify all the observations as having cancer. The overall accuracy would be 95%, but in more detail the classifier would have a 100% recognition rate ( sensitivity ) for the cancer class but a 0% recognition rate for the non ...

  7. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  8. Artificial intelligence engineering - Wikipedia

    en.wikipedia.org/wiki/Artificial_intelligence...

    Creating data pipelines and addressing issues like imbalanced datasets or missing values are also essential to maintain model integrity during training. [27] In the case of using pre-existing models, the dataset requirements often differ. Here, engineers focus on obtaining task-specific data that will be used to fine-tune a general model.

  9. Convolutional code - Wikipedia

    en.wikipedia.org/wiki/Convolutional_code

    To convolutionally encode data, start with k memory registers, each holding one input bit.Unless otherwise specified, all memory registers start with a value of 0. The encoder has n modulo-2 adders (a modulo 2 adder can be implemented with a single Boolean XOR gate, where the logic is: 0+0 = 0, 0+1 = 1, 1+0 = 1, 1+1 = 0), and n generator polynomials — one for each adder (see figure below).