When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    In 2021, a very simple NN architecture combining two deep MLPs with skip connections and layer normalizations was designed and called MLP-Mixer; its realizations featuring 19 to 431 millions of parameters were shown to be comparable to vision transformers of similar size on ImageNet and similar image classification tasks. [25]

  3. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    In particular see "Chapter 4: Artificial Neural Networks" (in particular pp. 96–97) where Mitchell uses the word "logistic function" and the "sigmoid function" synonymously – this function he also calls the "squashing function" – and the sigmoid (aka logistic) function is used to compress the outputs of the "neurons" in multi-layer neural ...

  4. Verhoeff algorithm - Wikipedia

    en.wikipedia.org/wiki/Verhoeff_algorithm

    The inverse table inv represents the multiplicative inverse of a digit, that is, the value that satisfies d(j, inv(j)) = 0. The permutation table p applies a permutation to each digit based on its position in the number. This is actually a single permutation (1 5 8 9 4 2 7 0)(3 6) applied iteratively; i.e. p(i+j,n) = p(i, p(j,n)).

  5. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    In machine learning, the perceptron is an algorithm for supervised learning of binary classifiers.A binary classifier is a function which can decide whether or not an input, represented by a vector of numbers, belongs to some specific class. [1]

  6. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    Multiclass SVM aims to assign labels to instances by using support vector machines, where the labels are drawn from a finite set of several elements. The dominant approach for doing so is to reduce the single multiclass problem into multiple binary classification problems. [ 30 ]

  7. One-class classification - Wikipedia

    en.wikipedia.org/wiki/One-class_classification

    In machine learning, one-class classification (OCC), also known as unary classification or class-modelling, tries to identify objects of a specific class amongst all objects, by primarily learning from a training set containing only the objects of that class, [1] although there exist variants of one-class classifiers where counter-examples are used to further refine the classification boundary.

  8. MNIST database - Wikipedia

    en.wikipedia.org/wiki/MNIST_database

    The set of images in the MNIST database was created in 1994. Previously, NIST released two datasets: Special Database 1 (NIST Test Data I, or SD-1); and Special Database 3 (or SD-2).

  9. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    In machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). For example, deciding on whether an image is showing a banana, peach, orange, or an ...