When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Skew coordinates - Wikipedia

    en.wikipedia.org/wiki/Skew_coordinates

    A system of skew coordinates is a curvilinear coordinate system where the coordinate surfaces are not orthogonal, [1] in contrast to orthogonal coordinates.. Skew coordinates tend to be more complicated to work with compared to orthogonal coordinates since the metric tensor will have nonzero off-diagonal components, preventing many simplifications in formulas for tensor algebra and tensor ...

  3. Grid classification - Wikipedia

    en.wikipedia.org/wiki/Grid_classification

    b) Nonorthogonal coordinate. Figure 3 shows non-orthogonal grids. The figure shows the grid lines do not intersect at 90-degree angle. In both these cases the domain boundaries coincide with the coordinate lines; therefore all the geometrical details can be incorporated. Grids can be refined easily to capture important flow features.

  4. Generalized minimal residual method - Wikipedia

    en.wikipedia.org/wiki/Generalized_minimal...

    Note that ~ is an (n + 1)-by-n matrix, hence it gives an over-constrained linear system of n+1 equations for n unknowns. The minimum can be computed using a QR decomposition : find an ( n + 1)-by-( n + 1) orthogonal matrix Ω n and an ( n + 1)-by- n upper triangular matrix R ~ n {\displaystyle {\tilde {R}}_{n}} such that Ω n H ~ n = R ~ n ...

  5. Curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Curvilinear_coordinates

    A curvilinear coordinate system may be simpler to use than the Cartesian coordinate system for some applications. The motion of particles under the influence of central forces is usually easier to solve in spherical coordinates than in Cartesian coordinates; this is true of many physical problems with spherical symmetry defined in R 3 .

  6. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...

  7. Oblate spheroidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Oblate_spheroidal_coordinates

    Oblate spheroidal coordinates can also be considered as a limiting case of ellipsoidal coordinates in which the two largest semi-axes are equal in length. Oblate spheroidal coordinates are often useful in solving partial differential equations when the boundary conditions are defined on an oblate spheroid or a hyperboloid of revolution.

  8. Helmert transformation - Wikipedia

    en.wikipedia.org/wiki/Helmert_transformation

    Contains the three translations along the coordinate axes; μ – scale factor, which is unitless; if it is given in ppm, it must be divided by 1,000,000 and added to 1. R – rotation matrix. Consists of three axes (small [clarification needed] rotations around each of the three coordinate axes) r x, r y, r z. The rotation matrix is an ...

  9. Bipolar cylindrical coordinates - Wikipedia

    en.wikipedia.org/.../Bipolar_cylindrical_coordinates

    The classic applications of bipolar coordinates are in solving partial differential equations, e.g., Laplace's equation or the Helmholtz equation, for which bipolar coordinates allow a separation of variables (in 2D). A typical example would be the electric field surrounding two parallel cylindrical conductors.

  1. Related searches non orthogonal coordinate system equation solver download free full version with serial key

    orthogonal coordinates wikipediaorthogonal coordinates formula