Search results
Results From The WOW.Com Content Network
The subgame perfect equilibrium in addition to the Nash equilibrium requires that the strategy also is a Nash equilibrium in every subgame of that game. This eliminates all non-credible threats , that is, strategies that contain non-rational moves in order to make the counter-player change their strategy.
Kuhn poker is a simplified form of poker developed by Harold W. Kuhn as a simple model zero-sum two-player imperfect-information game, amenable to a complete game-theoretic analysis. In Kuhn poker, the deck includes only three playing cards, for example, a King, Queen, and Jack. One card is dealt to each player, which may place bets similarly ...
Number of pure strategy Nash equilibria: A Nash equilibrium is a set of strategies which represents mutual best responses to the other strategies. In other words, if every player is playing their part of a Nash equilibrium, no player has an incentive to unilaterally change their strategy.
Nash's most famous contribution to game theory is the concept of the Nash equilibrium, which is a solution concept for non-cooperative games, published in 1951. A Nash equilibrium is a set of strategies, one for each player, such that no player can improve their payoff by unilaterally changing their strategy.
While Nash proved that every finite game has a Nash equilibrium, not all have pure strategy Nash equilibria. For an example of a game that does not have a Nash equilibrium in pure strategies, see Matching pennies. However, many games do have pure strategy Nash equilibria (e.g. the Coordination game, the Prisoner's dilemma, the Stag hunt ...
Nash (1951) shows that every finite symmetric game has a symmetric mixed strategy Nash equilibrium. Cheng et al. (2004) show that every two-strategy symmetric game has a (not necessarily symmetric) pure strategy Nash equilibrium. Emmons et al. (2022) show that in every common-payoff game (a.k.a. team game) (that is, every game in which all ...
The solutions are normally based on the concept of Nash equilibrium, and these solutions are reached by using methods listed in Solution concept. Most solutions used in non-cooperative game are refinements developed from Nash equilibrium, including the minimax mixed-strategy proved by John von Neumann. [8] [13] [20]
Finding Nash equilibrium in a game takes exponential time in the size of the representation. If the graphical representation of the game is a tree, we can find the equilibrium in polynomial time. In the general case, where the maximal degree of a node is 3 or more, the problem is NP-complete.