Search results
Results From The WOW.Com Content Network
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
The graph of a function with a horizontal (y = 0), vertical (x = 0), and oblique asymptote (purple line, given by y = 2x) A curve intersecting an asymptote infinitely many times In analytic geometry , an asymptote ( / ˈ æ s ɪ m p t oʊ t / ) of a curve is a line such that the distance between the curve and the line approaches zero as one or ...
An undirected graph with three vertices and three edges. In one restricted but very common sense of the term, [1] [2] a graph is an ordered pair = (,) comprising: , a set of vertices (also called nodes or points);
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
Switching {X,Y} in a graph. A two-graph is equivalent to a switching class of graphs and also to a (signed) switching class of signed complete graphs.. Switching a set of vertices in a (simple) graph means reversing the adjacencies of each pair of vertices, one in the set and the other not in the set: thus the edge set is changed so that an adjacent pair becomes nonadjacent and a nonadjacent ...
Thus, in an xy-coordinate system the graph of a function :, >, with equation =, >, is a rectangular hyperbola entirely in the first and third quadrants with the coordinate axes as asymptotes , the line y = x {\displaystyle y=x} as major axis ,
The graph always lies above the x-axis, but becomes arbitrarily close to it for large negative x; thus, the x-axis is a horizontal asymptote. The equation = means that the slope of the tangent to the graph at each point is equal to its height (its y-coordinate) at that point.
In the graph, moving one unit to the right (increasing x by 1) moves the y-value up by a: that is, (+) = +. Negative slope a indicates a decrease in y for each increase in x . For example, the linear function y = − 2 x + 4 {\displaystyle y=-2x+4} has slope a = − 2 {\displaystyle a=-2} , y -intercept point ( 0 , b ) = ( 0 , 4 ...