Search results
Results From The WOW.Com Content Network
In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. [1] Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements.
In the theoretical analysis of algorithms, the normal practice is to estimate their complexity in the asymptotic sense. The most commonly used notation to describe resource consumption or "complexity" is Donald Knuth 's Big O notation , representing the complexity of an algorithm as a function of the size of the input n {\textstyle n} .
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations N as the result of input size n for each function. In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm.
The complexity of an algorithm is usually taken to be its worst-case complexity unless specified otherwise. Analyzing a particular algorithm falls under the field of analysis of algorithms . To show an upper bound T ( n ) {\displaystyle T(n)} on the time complexity of a problem, one needs to show only that there is a particular algorithm with ...
Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, () below stands in for the complexity of the chosen multiplication algorithm.
A* (pronounced "A-star") is a graph traversal and pathfinding algorithm that is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. [1] Given a weighted graph, a source node and a goal node, the algorithm finds the shortest path (with respect to the given weights) from source to goal.
More formally, the complexity of a string is the length of the shortest possible description of the string in some fixed universal description language (the sensitivity of complexity relative to the choice of description language is discussed below). It can be shown that the Kolmogorov complexity of any string cannot be more than a few bytes ...
Let P 1 and P 2 be two problems in FNP, with associated verification algorithms A 1, A 2. A reduction P 1 and P 2 is defined as two efficiently-computable functions, f and g, such that [3] f maps inputs x to P 1 to inputs f(x) to P 2 ; g maps outputs y to P 2 to outputs g(y) to P 1 ; For all x and y: if A 2 (f(x),y) returns true, then A 1 (x, g ...