Search results
Results From The WOW.Com Content Network
Below is the list of muon (anti)neutrino beams used in past or current physics experiments: CERN Neutrinos to Gran Sasso (CNGS) beam [10] produced by Super Proton Synchrotron at CERN used in OPERA and ICARUS experiments. Booster Neutrino Beam (BNB) produced by the Booster synchrotron at Fermilab used in SciBooNE, MiniBooNE and MicroBooNE ...
In the 1980s, monitored neutrino beams were built in the USSR in the framework of the "tagged neutrino beam facility". [7] This facility did not reach a flux sufficient to feed neutrino experiments and was later descoped to a tagged kaon beam facility. Current neutrino beams record muons but they have not reached single-particle sensitivity.
The muon neutrino is an elementary particle which has the symbol ν μ and zero electric charge. Together with the muon it forms the second generation of leptons, hence the name muon neutrino. It was discovered in 1962 by Leon Lederman, Melvin Schwartz and Jack Steinberger. The discovery was rewarded with the 1988 Nobel Prize in Physics.
This beam then passed 732 kilometres (455 mi) through the crust of the Earth and it is expected that during flight some of the muon neutrinos convert into other neutrino types such as tau neutrinos. [1] Once the beam arrived at Gran Sasso, the OPERA and ICARUS experiments were used to detect the neutrinos.
The 17-GeV muon neutrino beam consisted of 4 batches per extraction separated by ~300ns, and the batches consisted of 16 bunches separated by ~100ns, with a bunch width of ~2ns. [ 21 ] Borexino
ENUBET studies all technical and physics challenges to demonstrate the feasibility of a monitored neutrino beam: [9] it has built a full-scale demonstrator of the instrumented decay tunnel (3 m length and partial azimuthal coverage) and assesses costs and physics reach of the proposed facility. The first end-to-end simulation of the ENUBET ...
In such reactions, one or more nucleons are knocked out of a nucleus by a neutrino as the muon neutrino or muon antineutrino is transformed into a muon or antimuon. MINERvA's first scientific results measured the rate of these processes in correlation with the visible energy from knocked-out protons. They suggested that about 20% of the ...
ANNIE runs using the Booster Neutrino Beam (BNB) which runs at 7.5 Hz, with roughly 4 x 10 12 protons-on-target per spill. These are delivered in 81 bunches over 1.6 microseconds per spill to a target 100 meters upstream in the SciBooNE hall. The beam, in neutrino mode, is 94% pure muon neutrinos with a flux peak energy at around 700 MeV. [2]