Search results
Results From The WOW.Com Content Network
Similarly, vec(A T) is the vector obtaining by vectorizing A in row-major order. The cycles and other properties of this permutation have been heavily studied for in-place matrix transposition algorithms. In the context of quantum information theory, the commutation matrix is sometimes referred to as the swap matrix or swap operator [1]
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]
The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...
The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication: a + i b ≡ ...
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
The matrix left-division operator concisely expresses some semantic properties of matrices. As in the scalar equivalent, if the (determinant of the) coefficient (matrix) A is not null then it is possible to solve the (vectorial) equation A * x = b by left-multiplying both sides by the inverse of A: A −1 (in both MATLAB and GNU Octave ...
The rows and columns of Transpositions matrix consists permutation of elements of vector X, as there are n/2 transpositions between every two rows or columns of the matrix Example [ edit ]
In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.