Ad
related to: raman spectrum waveform formula pdf printable sheet spanish
Search results
Results From The WOW.Com Content Network
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Energy-level diagram showing the states involved in Raman spectra. Raman spectroscopy (/ ˈ r ɑː m ən /) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. [1]
In other words, it is the width of a spectrum curve measured between those points on the y-axis which are half the maximum amplitude. Half width at half maximum (HWHM) is half of the FWHM if the function is symmetric. The term full duration at half maximum (FDHM) is preferred when the independent variable is time.
The symmetry of a vibrational mode is deduced from the depolarization ratio ρ, which is the ratio of the Raman scattering with polarization orthogonal to the incident laser and the Raman scattering with the same polarization as the incident laser: = Here is the intensity of Raman scattering when the analyzer is rotated 90 degrees with respect ...
Raman amplification / ˈ r ɑː m ən / [1] is based on the stimulated Raman scattering (SRS) phenomenon, when a lower frequency 'signal' photon induces the inelastic scattering of a higher-frequency 'pump' photon in an optical medium in the nonlinear regime. As a result of this, another 'signal' photon is produced, with the surplus energy ...
A Fermi resonance is the shifting of the energies and intensities of absorption bands in an infrared or Raman spectrum. It is a consequence of quantum-mechanical wavefunction mixing. [ 1 ] The phenomenon was first explained by the Italian physicist Enrico Fermi .
Typically, resonance Raman spectroscopy is performed in the same manner as ordinary Raman spectroscopy, using a single laser light source to excite the sample. The difference is the choice of the laser wavelength, which must be selected to match the energy of an electronic transition in the sample.
Raman microscopy, and in particular confocal microscopy, can reach down to sub-micrometer lateral spatial resolution. [7] Because a Raman microscope is a diffraction-limited system, its spatial resolution depends on the wavelength of light and the numerical aperture of the focusing element. In confocal Raman microscopy, the diameter of the ...