Search results
Results From The WOW.Com Content Network
The concentration of pure osmium tetroxide (molar mass = 254.23 g/mol) is c(OsO 4) = 5.1 kg/L / 254.23 g/mol = 20.1 mol/L. A typical protein in bacteria, such as E. coli, may have about 60 copies, and the volume of a bacterium is about 10 −15 L. Thus, the number concentration C is C = 60 / (10 −15 L) = 6 × 10 16 L −1. The molar ...
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
This page lists examples of the orders of magnitude of molar concentration. Source values are parenthesized where unit conversions were performed. M denotes the non-SI unit molar: 1 M = 1 mol/L = 10 −3 mol/m 3.
For example, the conversion of a flowrate of kg/s to kmol/s only requires dividing by the molar mass in g/mol (as = =) without multiplying by 1000 unless the basic SI unit of mol/s were to be used, which would otherwise require the molar mass to be converted to kg/mol. For convenience in avoiding conversions in the imperial (or US customary ...
To convert from / to /, divide by 10. To convert from / to ... 1 dm 3 /mol = 1 L/mol = 1 m 3 /kmol = 0.001 m 3 /mol (where kmol is kilomoles = 1000 moles) References
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.
The term molality is formed in analogy to molarity which is the molar concentration of a solution. The earliest known use of the intensive property molality and of its adjectival unit, the now-deprecated molal, appears to have been published by G. N. Lewis and M. Randall in the 1923 publication of Thermodynamics and the Free Energies of Chemical Substances. [3]
The solution has 1 mole or 1 equiv Na +, 1 mole or 2 equiv Ca 2+, and 3 mole or 3 equiv Cl −. An earlier definition, used especially for chemical elements, holds that an equivalent is the amount of a substance that will react with 1 g (0.035 oz) of hydrogen, 8 g (0.28 oz) of oxygen, or 35.5 g (1.25 oz) of chlorine—or that will displace any ...