Search results
Results From The WOW.Com Content Network
A problem statement is a description of an issue to be addressed, or a condition to be improved upon. It identifies the gap between the current problem and goal. The first condition of solving a problem is understanding the problem, which can be done by way of a problem statement. [1]
A common example of an NP problem not known to be in P is the Boolean satisfiability problem. Most mathematicians and computer scientists expect that P ≠ NP; however, it remains unproven. [16] The official statement of the problem was given by Stephen Cook. [17]
In mathematical logic, Tarski's high school algebra problem was a question posed by Alfred Tarski. It asks whether there are identities involving addition , multiplication , and exponentiation over the positive integers that cannot be proved using eleven axioms about these operations that are taught in high-school-level mathematics .
For example, the Navier–Stokes equations are often used to model fluid flows that are turbulent, which means that the fluid is highly chaotic and unpredictable. Turbulence is a difficult phenomenon to model and understand, and it adds another layer of complexity to the problem of solving the Navier–Stokes equations.
Another related problem is the bottleneck travelling salesman problem: Find a Hamiltonian cycle in a weighted graph with the minimal weight of the weightiest edge. A real-world example is avoiding narrow streets with big buses. [15] The problem is of considerable practical importance, apart from evident transportation and logistics areas.
[7] Jeffrey Lagarias stated in 2010 that the Collatz conjecture "is an extraordinarily difficult problem, completely out of reach of present day mathematics". [8] However, though the Collatz conjecture itself remains open, efforts to solve the problem have led to new techniques and many partial results. [8] [9]
Convincing political parties to support this switch has been a problem in the U.S. too, as evidenced by the successful campaigns against voting reforms in several western states last year.
Terence Tao gave this "rough" statement of the problem: [1]. Parity problem.If A is a set whose elements are all products of an odd number of primes (or are all products of an even number of primes), then (without injecting additional ingredients), sieve theory is unable to provide non-trivial lower bounds on the size of A.