Search results
Results From The WOW.Com Content Network
An image conditioned on the prompt an astronaut riding a horse, by Hiroshige, generated by Stable Diffusion 3.5, a large-scale text-to-image model first released in 2022. A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description.
An improved flagship model, Flux 1.1 Pro was released on 2 October 2024. [27] [28] Two additional modes were added on 6 November, Ultra which can generate image at four times higher resolution and up to 4 megapixel without affecting generation speed and Raw which can generate hyper-realistic image in the style of candid photography. [29] [30] [31]
Text-to-Image personalization is a task in deep learning for computer graphics that augments pre-trained text-to-image generative models. In this task, a generative model that was trained on large-scale data (usually a foundation model ), is adapted such that it can generate images of novel, user-provided concepts.
Ideogram was founded in 2022 by Mohammad Norouzi, William Chan, Chitwan Saharia, and Jonathan Ho to develop a better text-to-image model. [3]It was first released with its 0.1 model on August 22, 2023, [4] after receiving $16.5 million in seed funding, which itself was led by Andreessen Horowitz and Index Ventures.
Stable Diffusion is a deep learning, text-to-image model released in 2022 based on diffusion techniques. The generative artificial intelligence technology is the premier product of Stability AI and is considered to be a part of the ongoing artificial intelligence boom.
Download QR code; Print/export Download as PDF; Printable version; In other projects Appearance. move to sidebar hide. ... Text-to-image model; Retrieved from "https: ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Multimodal learning is a type of deep learning that integrates and processes multiple types of data, referred to as modalities, such as text, audio, images, or video.This integration allows for a more holistic understanding of complex data, improving model performance in tasks like visual question answering, cross-modal retrieval, [1] text-to-image generation, [2] aesthetic ranking, [3] and ...